欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 平面向量的数量积及运算律(1)

平面向量的数量积及运算律(1)

网友 分享 时间: 加入收藏 我要投稿 点赞 11
1

平面向量的数量积及运算律(1)

教学目的:
1 掌握平面向量的数量积及其几何意义;
2 掌握平面向量数量积的重要性质及运算律;
3 了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;
4 掌握向量垂直的条件
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
授课类型:新授课
课时安排:1课时
教    具:多媒体、实物投影仪
内容分析:
    本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识 主要知识点:平面向量数量积的定义及几何意义;平面向量数量积的5个重要性质;平面向量数量积的运算律
教学过程:
一、复习引入:    
1. 向量共线定理  向量 与非零向量 共线的充要条件是:有且只有一个非零实数λ,使 =λ 
2.平面向量基本定理:如果 , 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数λ1,λ2使 =λ1 +λ2
3.平面向量的坐标表示
  分别取与 轴、 轴方向相同的两个单位向量 、 作为基底 任作一个向量 ,由平面向量基本定理知,有且只有一对实数 、 ,使得
把 叫做向量 的(直角)坐标,记作
4.平面向量的坐标运算
若 , ,
则  ,  , 
若 , ,则
5. ∥  (  )的充要条件是x1y2-x2y1=0
6.线段的定比分点及λ
  p1, p2是直线l上的两点,p是l上不同于p1, p2的任一点,存在实数λ,
使  =λ ,λ叫做点p分 所成的比,有三种情况:
λ>0(内分)      (外分) λ<0 (λ<-1)    ( 外分)λ<0  (-1<λ<0)

7 定比分点坐标公式:
若点p1(x1,y1) ,p2(x2,y2),λ为实数,且 =λ ,则点p的坐标为( ),我们称λ为点p分 所成的比
8 点p的位置与λ的范围的关系:
①当λ>0时, 与 同向共线,这时称点p为 的内分点
②当λ<0( )时, 与 反向共线,这时称点p为 的外分点
9 线段定比分点坐标公式的向量形式:
在平面内任取一点o,设 = , = ,
可得 = 
10.力做的功:w = | || |cos,是 与 的夹角
二、讲解新课:
1.两个非零向量夹角的概念
已知非零向量 与 ,作 = , = ,则∠aob=θ(0≤θ≤π)叫 与 的夹角
说明:(1)当θ=0时, 与 同向;
(2)当θ=π时, 与 反向;
(3)当θ= 时, 与 垂直,记 ⊥ ;
(4)注意在两向量的夹角定义,两向量必须是同起点的 范围0≤≤180
 
2.平面向量数量积(内积)的定义:已知两个非零向量 与 ,它们的夹角是θ,则数量| || |cos叫 与 的数量积,记作  ,即有   = | || |cos,
(0≤θ≤π) 并规定 与任何向量的数量积为0
探究:两个向量的数量积与向量同实数积有很大区别
(1)两个向量的数量积是一个实数,不是向量,符号由cos的符号所决定
(2)两个向量的数量积称为内积,写成  ;今后要学到两个向量的外积 × ,而  是两个向量的数量的积,书写时要严格区分 符号“• ”在向量运算中不是乘号,既不能省略,也不能用“×”代替

3页,当前第1123
221381
领取福利

微信扫码领取福利

平面向量的数量积及运算律(1)

微信扫码分享

月会员
每天200次下载
2元/30天
直接下载
单次下载
0.1元/次
微信支付
欢迎使用微信支付
扫一扫支付
金额:
常见问题

请登录之后再下载!

下载中心

您的账号注册成功!密码为:123456,当前为默认信息,请及时修改

下载文件立即修改

帮助中心

如何获取自己的订单号?

打开微信,找到微信支付,找到自己的订单,就能看到自己的交易订单号了。

阅读并接受《用户协议》
注:各登录账户无关联!请仅用一种方式登录。


用户注册协议

一、 本网站运用开源的网站程序平台,通过国际互联网络等手段为会员或游客提供程序代码或者文章信息等服务。本网站有权在必要时修改服务条款,服务条款一旦发生变动,将会在重要页面上提示修改内容或通过其他形式告知会员。如果会员不同意所改动的内容,可以主动取消获得的网络服务。如果会员继续享用网络服务,则视为接受服务条款的变动。网站保留随时修改或中断服务而不需知照会员的权利。本站行使修改或中断服务的权利,不需对会员或第三方负责。

关闭