欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 四边形(精选16篇)

四边形(精选16篇)

网友 分享 时间: 加入收藏 我要投稿 点赞

四边形(精选16篇)

四边形 篇1

  教学建议

  1.教材分析

  (1)知识结构:

  (2)重点和难点分析:

  重点:的有关概念及内角和定理.因为的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用.

  难点:的概念及不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点.

  2.教法建议

  (1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣.

  (2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立的有关概念,如的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、的图形,对比着指给学生看,让学生明确这些概念.

  (3)因为在三角形中没有对角线,所以的对角线是一个新概念,它是解决问题时常用的辅助线,通过它可以把问题转化为三角形问题来解决.结合图形,让学生自己动手作的一条对角线,并观察的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识.

  (4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题.

  一、素质教育目标

  (一)知识教学点

  1.使学生掌握的有关概念及的内角和外角和定理.

  2.了解的不稳定性及它在实际生产,生活中的应用.

  (二)能力训练点

  1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.

  2.通过推导内角和定理,对学生渗透化归思想.

  3.会根据比较简单的条件画出指定的.

  4.讲解外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.

  (三)德育渗透点

  使学生认识到这些都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.

  (四)美育渗透点

  通过内角和定理数学,渗透统一美,应用美.

  二、学法引导

  类比、观察、引导、讲解

  三、重点・难点・疑点及解决办法

  1.教学重点:及其有关概念;熟练推导外角和这一结论,并用此结论解决与内外角有关计算问题.

  2.教学难点 :理解的有关概念中的一些细节问题;不稳定性的理解和应用.

  3.疑点及解决办法:的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画,关键是要分析好作图的顺序,一般先作一个角.

  四、课时安排

  2课时

  五、教具学具准备

  投影仪、胶片、模型、常用画图工具

  六、师生互动活动设计

  教师引入新课,学生观察图形,类比三角形知识导出有关概念;师生共同推导内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.

  第一课时

  七、教学步骤 

  【复习引入】

  在小学里已经对、长方形、平形的有关知识有所了解,但还很肤浅,这一

  章我们将比较系统地学习各种的性质和判定分析它们之间的关系,并运用有关的知识解决一些新问题.

  【引入新课】

  用投影仪打出课前画好的教材中P119的图.

  师问:在上图中你能把知道的长方形、正方形、平行、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形).

  【讲解新课】

  1.的有关概念

  结合图形讲解,的边、顶点、角,凸,的对角线(同时学生在书上画出上述概念),讲解这些概念时:

  (1)要结合图形.

  (2)要与三角形类比.

  (3)讲清定义中的关键词语.如定义中要说明为什么加上“同一平面内”而三角形的定义中为什么不加“同一平面内”(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图4―2中的点 .我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制).

  (4)强调对角线的作用,作为的一种常用的辅助线,通过它可以把问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原的关系.

  (5)强调的表示方法,一定要按顶点顺序书写如图4―1.

  (6)在判断一个是不是凸时,一定要按照定义的要求把每一边都延长后再下结论如图4-4,图4-5.

  2.内角和定理

  教师问:

  (1)在图4-3中对角线AC把ABCD分成几个三角形?

  (2)在图4-6中两条对角线AC和BD把分成几个三角形?

  (3)若在ABCD如图4-7内任取一点O,从O向四个顶点作连线,把分成几个三角形.

  我们知道,三角形内角和等于180°,那么的内角和就等于:

  ①2×180°=360°如图4―6;

  ②4×180°-360°=360°如图4-7.

  例1  已知:如图4―8,直线 于B、 于C.

  求证:(1) ; (2) .

  本例题是内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出.

  【总结、扩展】

  1.的有关概念.

  2.对角线的作用.

  3.内角和定理.

  八、布置作业 

  教材P128中1(1)、2、 3.

  九、板书设计 

  (一)

  有关概念

  内角和

  例1

  十、随堂练习

  教材P122中1、2、3.

四边形 篇2

  教学建议

  1.教材分析

  (1)知识结构:

  (2)重点和难点分析:

  重点:的有关概念及内角和定理.因为的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用.

  难点:的概念及不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点.

  2.教法建议

  (1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣.

  (2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立的有关概念,如的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、的图形,对比着指给学生看,让学生明确这些概念.

  (3)因为在三角形中没有对角线,所以的对角线是一个新概念,它是解决问题时常用的辅助线,通过它可以把问题转化为三角形问题来解决.结合图形,让学生自己动手作的一条对角线,并观察的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识.

  (4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题.

  一、素质教育目标

  (一)知识教学

  1.使学生掌握的有关概念及的内角和外角和定理.

  2.了解的不稳定性及它在实际生产,生活中的应用.

  (二)能力训练点

  1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.

  2.通过推导内角和定理,对学生渗透化归思想.

  3.会根据比较简单的条件画出指定的.

  4.讲解外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.

  (三)德育渗透点

  使学生认识到这些都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.

  (四)美育渗透点

  通过内角和定理数学,渗透统一美,应用美.

  二、学法引导

  类比、观察、引导、讲解

  三、重点・难点・疑点及解决办法

  1.教学重点:及其有关概念;熟练推导外角和这一结论,并用此结论解决与内外角有关计算问题.

  2.教学难点:理解的有关概念中的一些细节问题;不稳定性的理解和应用.

  3.疑点及解决办法:的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画,关键是要分析好作图的顺序,一般先作一个角.

  四、课时安排

  2课时

  五、教具学具准备

  投影仪、胶片、模型、常用画图工具

  六、师生互动活动设计

  教师引入新课,学生观察图形,类比三角形知识导出有关概念;师生共同推导内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.

  第一课时

  七、教学步骤

  【复习引入】

  在小学里已经对、长方形、平形的有关知识有所了解,但还很肤浅,这一

  章我们将比较系统地学习各种的性质和判定分析它们之间的关系,并运用有关的知识解决一些新问题.

  【引入新课】

  用投影仪打出课前画好的教材中P119的图.

  师问:在上图中你能把知道的长方形、正方形、平行、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形).

  【讲解新课】

  1.的有关概念

  结合图形讲解,的边、顶点、角,凸,的对角线(同时学生在书上画出上述概念),讲解这些概念时:

  (1)要结合图形.

  (2)要与三角形类比.

  (3)讲清定义中的关键词语.如定义中要说明为什么加上“同一平面内”而三角形的定义中为什么不加“同一平面内”(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图4―2中的点 .我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制).

  (4)强调对角线的作用,作为的一种常用的辅助线,通过它可以把问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原的关系.

  (5)强调的表示方法,一定要按顶点顺序书写如图4―1.

  (6)在判断一个是不是凸时,一定要按照定义的要求把每一边都延长后再下结论如图4-4,图4-5.

  2.内角和定理

  教师问:

  (1)在图4-3中对角线AC把ABCD分成几个三角形?

  (2)在图4-6中两条对角线AC和BD把分成几个三角形?

  (3)若在ABCD如图4-7内任取一点O,从O向四个顶点作连线,把分成几个三角形.

  我们知道,三角形内角和等于180°,那么的内角和就等于:

  ①2×180°=360°如图4―6;

  ②4×180°-360°=360°如图4-7.

  例1  已知:如图4―8,直线 于B、 于C.

  求证:(1) ; (2) .

  本例题是内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出.

  【总结、扩展】

  1.的有关概念.

  2.对角线的作用.

  3.内角和定理.

  八、布置作业 

  教材P128中1(1)、2、 3.

  九、板书设计

  (一)

  有关概念

  内角和

  例1

  十、随堂练习

  教材P122中1、2、3.

四边形 篇3

  一、教材分析

  是在前面“空间与图形”的基础上进行教学的,通过找一找,分一分,围一围等系列活动,充分感知四边形,抽象出四边形的特征,为今后进一步学习平行四边形、梯形以及平面图形的周长等打下基础。本节课是四边形这一单元的第一课时,教材从学生的生活经验出发,让他们通过观察、操作、有条理的思考和交流等活动,丰富他们对四边形的感性认识,经历从现实空间抽象出四边形的过程;又通过分类活动,了解不同四边形各自的特性,加深对长方形和正方形的认识。从而获得鲜明、生动和形象的认识,进而形成表象,发展空间观念。

  二、学生分析

  1、在一、二年级时学生已经初步认识了长方形、正方形、三角形、圆形,锐角、直角和钝角这些几何图形,有一定的知识积累,形成了一定的表象。

  2、学生学习过简单的分类,但是这次的分类标准以学生来看有些抽象,学生可能受以往经验的限制而不知道从何下手进行分类,。

  3、学生以前初步认识过长方形和正方形边的特征,这节课上要在以前的基础上更加全面地认识长方形和正方形的特征。

  4、本节课设计的学习活动如分一分、比一比、量一量、围一围等一方面让学生经历知识形成过程,另一方面符合学生好动好玩的年龄特点,利于孩子们的学习兴趣培养。

  三、学习目标

  1、通过学习活动,学生能直观感知四边形,能区分和辨认四边形;进一步认识长方形和正方形,掌握它们边和角的特征。

  2、学会按一定的顺序观察,有针对性的进行比较,有条理的进行思考,能够通过观察四边形,从中抽象概括出四边形的特征。

  3、学生能感受四边形在生活中的广泛应用,积极参与找图形、分类等活动,更有兴趣地学习数学。

  教学重点:

  认识四边形的特征,能区分和辨认四边形,加深对长方形和正方形的认识。

  教具准备:

  课件   例1当中的图形教具一套

  学具准备:

  图形学具   钉子板    皮筋    三角板

  四、教学过程

  一、谈话导入

  今年我们国家举办了一场盛大的体育比赛,你知道是什么吗?(奥运会)

  老师这儿有一些用平面图形拼成的运动图案,你知道他们在干什么吗?

  (踢足球、骑自行车、举重)

  [设计意图:看拼图猜运动项目,激发学生的学习兴趣。]

  二、实践探究

  活动一:从现实生活中抽象出几何图形,并认识四边形。

  1、其实,图形在我们的生活中是很常见的,下面就让我们一同走进光明小学的校园,找一找校园中都有哪些图形。

  师:请大家按照一定的顺序来观察。

  谁能说一说你在什么位置找到了什么图形?(根据学生汇报抽象出图形。)

  师:我们找出了这么多图形,你觉得这幅图上那种图形最多?

  生:正方形、长方形……

  师:有同学说正方形最多,还有同学说长方形最多,如果让我说呀,我觉得“四边形”最多。(板书课题“四边形)

  你认为什么样的图形是四边形吗?(让学生先指一个)

  指着刚才学生指出的图形问其他同学,这个图形是不是四边形。

  (听取正反两方同学意见,并帮学生确认这就是四边形。)

  还有吗?(师生辨析并找出                                     )

  2、观察一下我们找出的四边形,它们有什么共同特点?

  (师生共同归纳并板书:有四条直的边,有四个角。)

  [设计意图:让学生经历从现实空间中抽象出几何图形的过程。学生说正方形、长方形最多,老师说四边形最多,跟学生原有的概念之间形成认知冲突,通过学生的观察、比较,以及师生之间的交流,使学生逐步明晰原来长方形、正方形等都属于四边形,最后总结归纳出四边形的特征。]

  活动二:从众多图形中寻找四边形。

  现在我们已经知道四边形的特征了,你能很快地从众多图形中找出四边形吗?拿出学具,把是四边形的图形挑出来。(书上35页例1)

  (共同反馈选出的四边形是否正确。)

  [设计意图:根据四边形的特征,从众多图形中辨认四边形,进一步加深对四边形特征的认识。]

  活动三:把四边形进行分类,通过分类了解不同四边形特征,加深长方形、正方形的认识。

  刚才我们已经认识了四边形,而且能从众多图形中找出四边形,实际上四边形是一个大家庭,里面有很多成员,,你们能不能把四边形分分类。

  同桌合作把四边形分分类。分之前想一想,你按什么分的?

  (预设:下面是可能出现的分类情况。)

  (当出现第一种分法时,让学生通过比一比、折一折或量一量的方法来探索长方形、正方形的特征。)

  [设计意图:通过分类对不同的四边形各自的特性有所了解,特别是加深对长方形和正方形的认识]

  三、小结:

  这节课你有什么收获?(今天我们认识了四边形,知道了四边形有四条边、有四个角,还知道了长方形对边相等,四个角都是直角;正方形四条边都相等,四个角都是直角。)

  四、练习

  1、下面我们就运用今天所学的知识来做一个小游戏,拿出你的钉子板和皮筋,按要求围四边形。

  ○1围一个四个角都是直角的四边形

  ○2围一个没有直角的四边形

  ○3围一个上下对边相等,左右对边也相等的四边形

  ○4围一个四条边都不相等的四边形

  2、课后请同学们留心观察,在那些地方还可以见到四边形?

  [设计意图:分类时,让学生从图形中找特征,练习时再让学生根据图形的特征形成表象,围出四边形。通过游戏设计练习,让学生在轻松愉快中学习、结束全课,从点滴培养他们热爱学习热爱数学的情绪体验。]

四边形 篇4

  四 边 形

  教学内容:教材34-36页

  教学目标 :

  1、直观感知,能区分和辨认,进一步认识长方形和正方形,掌握长方形和正方形的特点。

  2、通过找一找、涂一涂、说一说、分一分、围一围等多种活动,培养学生的观察比较和抽象概括的能力。

  3、通过情境图和生活中的事物进入课堂,感受生活中的无处不在,进一步激发学生的学习兴趣。

  4、培养学生积极参与数学学习活动的态度,以及与他人合作的良好习惯。

  教学重点:认识及特征。

  教具、学具准备:

  师准备多媒体课件、钉子板、把例1的图形画在纸上制成答题卡发给每一位学生。

  生准备直尺、纸、剪刀、细铁丝、七巧板、小棒。

  教学设计:

  课前谈话:这节课有几位专家老师到我们三(3 )班来,看同学们学习,请大家用热烈的掌声欢迎他们的到来。希望同学们认真思考,大胆发言,把我们三(3)班善于学习的风采展示给专家老师们看,好不好?上课!

  一、感知

  1、师:(课件出示主题图)请看屏幕,小精灵聪聪带领我们到光明小学参观。聪聪说:“仔细观察,你会发现许多图形。”从图上你能发现哪些图形?

  学生自由回答。

  师根据学生的回答把相应的图形用课件闪动。

  2、师:同学们真棒!在光明小学发现了这么多图形。(课件出示9个图形)在你们发现的这些图形中,哪些图形可以放在一起,分为一类?为什么?

  让学生充分发表意见。

  (用课件演示)可以把长方形、正方形、梯形、平行、菱形放在一起,因为他们都有四个角四条边。

  3、师说明:这些图形就叫做。板书课题:

  4、师:说一说你身边哪些物体的表面是的?

  找五名学生充分举例说明。

  5师:看来,生活中的实在是太多了!那你能动手把做出来吗?用自己准备的材料做出。看谁做的又快又好。

  让学生用小棒摆,用铁丝围,用笔画,用纸剪,充分动手。

  师:谁愿意把自己做的展示给大家看?

  找用不同材料做的四名学生展示。

  6、师:刚才你们找出了又做出了。那么,你能说一说到底什么样的图形是呢?

  归纳:有四条直直的边,有四个角的图形就是。

  板书:有四条直的边  有四个角

  二、教学例1

  过渡:同学们真了不起,知道了什么样的图形是。(课件出示例1)指着屏幕问:这些图形哪些是?请你在答题卡上把找出来,用彩笔涂上自己喜欢的颜色。

  学生涂颜色。指一名学生展示、回答。

  师用课件演示正确答案进行反馈、讲解。

  三、动手实践,教学例2。

  1、师:小组合作把这7个剪下来交给学习小组的组长,再把这些图形分分类。

  学生活动。

  师:你们是怎么分的?为什么这样分?

  2、学生汇报分类结果,着重指导学生说出为什么这样分。教师用课件随机演示分的方法。

  a.按照是不是直角:把长方形、正方形分为一类;把其它的图形分为一类。

  b. 按照对边是否平行且相等,把长方形、正方形、平行、菱形分为一类,其他的图形分为一类。

  c.按照四条边是否相等的:把正方形、菱形分为一类;其他的图形分为一类。

  d. 按照是否是规则图形:把正方形、长方形、平行、梯形、菱形分为一类;其他的分为一类。

  ……

  四、全课总结

  这节课,你学会了什么?

  五、巩固练习,拓展延伸

  1、在钉子板上围一围。(第36 页做一做)

  2、让学生以小组为单位,任意用七巧板中的图形拼成各种各样的,展示给大家看。

四边形 篇5

  教学建议

  1.教材分析

  (1)知识结构:

  (2)重点和难点分析:

  重点:的有关概念及内角和定理.因为的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用.

  难点:的概念及不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点.

  2.教法建议

  (1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣.

  (2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立的有关概念,如的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、的图形,对比着指给学生看,让学生明确这些概念.

  (3)因为在三角形中没有对角线,所以的对角线是一个新概念,它是解决问题时常用的辅助线,通过它可以把问题转化为三角形问题来解决.结合图形,让学生自己动手作的一条对角线,并观察的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识.

  (4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题.

  一、素质教育目标

  (一)知识教学点

  1.使学生掌握的有关概念及的内角和外角和定理.

  2.了解的不稳定性及它在实际生产,生活中的应用.

  (二)能力训练点

  1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.

  2.通过推导内角和定理,对学生渗透化归思想.

  3.会根据比较简单的条件画出指定的.

  4.讲解外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.

  (三)德育渗透点

  使学生认识到这些都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.

  (四)美育渗透点

  通过内角和定理数学,渗透统一美,应用美.

  二、学法引导

  类比、观察、引导、讲解

  三、重点・难点・疑点及解决办法

  1.教学重点:及其有关概念;熟练推导外角和这一结论,并用此结论解决与内外角有关计算问题.

  2.教学难点 :理解的有关概念中的一些细节问题;不稳定性的理解和应用.

  3.疑点及解决办法:的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画,关键是要分析好作图的顺序,一般先作一个角.

  四、课时安排

  2课时

  五、教具学具准备

  投影仪、胶片、模型、常用画图工具

  六、师生互动活动设计

  教师引入新课,学生观察图形,类比三角形知识导出有关概念;师生共同推导内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.

  第一课时

  七、教学步骤 

  【复习引入】

  在小学里已经对、长方形、平形的有关知识有所了解,但还很肤浅,这一

  章我们将比较系统地学习各种的性质和判定分析它们之间的关系,并运用有关的知识解决一些新问题.

  【引入新课】

  用投影仪打出课前画好的教材中P119的图.

  师问:在上图中你能把知道的长方形、正方形、平行、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形).

  【讲解新课】

  1.的有关概念

  结合图形讲解,的边、顶点、角,凸,的对角线(同时学生在书上画出上述概念),讲解这些概念时:

  (1)要结合图形.

  (2)要与三角形类比.

  (3)讲清定义中的关键词语.如定义中要说明为什么加上“同一平面内”而三角形的定义中为什么不加“同一平面内”(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图4―2中的点 .我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制).

  (4)强调对角线的作用,作为的一种常用的辅助线,通过它可以把问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原的关系.

  (5)强调的表示方法,一定要按顶点顺序书写如图4―1.

  (6)在判断一个是不是凸时,一定要按照定义的要求把每一边都延长后再下结论如图4-4,图4-5.

  2.内角和定理

  教师问:

  (1)在图4-3中对角线AC把ABCD分成几个三角形?

  (2)在图4-6中两条对角线AC和BD把分成几个三角形?

  (3)若在ABCD如图4-7内任取一点O,从O向四个顶点作连线,把分成几个三角形.

  我们知道,三角形内角和等于180°,那么的内角和就等于:

  ①2×180°=360°如图4―6;

  ②4×180°-360°=360°如图4-7.

  例1  已知:如图4―8,直线 于B、 于C.

  求证:(1) ; (2) .

  本例题是内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出.

  【总结、扩展】

  1.的有关概念.

  2.对角线的作用.

  3.内角和定理.

  八、布置作业 

  教材P128中1(1)、2、 3.

  九、板书设计 

  (一)

  有关概念

  内角和

  例1

  十、随堂练习

  教材P122中1、2、3.

四边形 篇6

  教学建议

  1.教材分析

  (1)知识结构:

  (2)重点和难点分析:

  重点:的有关概念及内角和定理.因为的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用.

  难点:的概念及不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点.

  2.教法建议

  (1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣.

  (2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立的有关概念,如的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、的图形,对比着指给学生看,让学生明确这些概念.

  (3)因为在三角形中没有对角线,所以的对角线是一个新概念,它是解决问题时常用的辅助线,通过它可以把问题转化为三角形问题来解决.结合图形,让学生自己动手作的一条对角线,并观察的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识.

  (4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题.

  一、素质教育目标

  (一)知识教学点

  1.使学生掌握的有关概念及的内角和外角和定理.

  2.了解的不稳定性及它在实际生产,生活中的应用.

  (二)能力训练点

  1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.

  2.通过推导内角和定理,对学生渗透化归思想.

  3.会根据比较简单的条件画出指定的.

  4.讲解外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.

  (三)德育渗透点

  使学生认识到这些都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.

  (四)美育渗透点

  通过内角和定理数学,渗透统一美,应用美.

  二、学法引导

  类比、观察、引导、讲解

  三、重点・难点・疑点及解决办法

  1.教学重点:及其有关概念;熟练推导外角和这一结论,并用此结论解决与内外角有关计算问题.

  2.教学难点 :理解的有关概念中的一些细节问题;不稳定性的理解和应用.

  3.疑点及解决办法:的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画,关键是要分析好作图的顺序,一般先作一个角.

  四、课时安排

  2课时

  五、教具学具准备

  投影仪、胶片、模型、常用画图工具

  六、师生互动活动设计

  教师引入新课,学生观察图形,类比三角形知识导出有关概念;师生共同推导内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.

  第一课时

  七、教学步骤 

  【复习引入】

  在小学里已经对、长方形、平形的有关知识有所了解,但还很肤浅,这一

  章我们将比较系统地学习各种的性质和判定分析它们之间的关系,并运用有关的知识解决一些新问题.

  【引入新课】

  用投影仪打出课前画好的教材中P119的图.

  师问:在上图中你能把知道的长方形、正方形、平行、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形).

  【讲解新课】

  1.的有关概念

  结合图形讲解,的边、顶点、角,凸,的对角线(同时学生在书上画出上述概念),讲解这些概念时:

  (1)要结合图形.

  (2)要与三角形类比.

  (3)讲清定义中的关键词语.如定义中要说明为什么加上“同一平面内”而三角形的定义中为什么不加“同一平面内”(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图4―2中的点 .我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制).

  (4)强调对角线的作用,作为的一种常用的辅助线,通过它可以把问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原的关系.

  (5)强调的表示方法,一定要按顶点顺序书写如图4―1.

  (6)在判断一个是不是凸时,一定要按照定义的要求把每一边都延长后再下结论如图4-4,图4-5.

  2.内角和定理

  教师问:

  (1)在图4-3中对角线AC把ABCD分成几个三角形?

  (2)在图4-6中两条对角线AC和BD把分成几个三角形?

  (3)若在ABCD如图4-7内任取一点O,从O向四个顶点作连线,把分成几个三角形.

  我们知道,三角形内角和等于180°,那么的内角和就等于:

  ①2×180°=360°如图4―6;

  ②4×180°-360°=360°如图4-7.

  例1  已知:如图4―8,直线 于B、 于C.

  求证:(1) ; (2) .

  本例题是内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出.

  【总结、扩展】

  1.的有关概念.

  2.对角线的作用.

  3.内角和定理.

  八、布置作业 

  教材P128中1(1)、2、 3.

  九、板书设计 

  (一)

  有关概念

  内角和

  例1

  十、随堂练习

  教材P122中1、2、3.

四边形 篇7

  教学建议

  1.教材分析

  (1)知识结构:

  (2)重点和难点分析:

  重点:的有关概念及内角和定理.因为的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用.

  难点:的概念及不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点.

  2.教法建议

  (1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣.

  (2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立的有关概念,如的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、的图形,对比着指给学生看,让学生明确这些概念.

  (3)因为在三角形中没有对角线,所以的对角线是一个新概念,它是解决问题时常用的辅助线,通过它可以把问题转化为三角形问题来解决.结合图形,让学生自己动手作的一条对角线,并观察的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识.

  (4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题.

  一、素质教育目标

  (一)知识教学

  1.使学生掌握的有关概念及的内角和外角和定理.

  2.了解的不稳定性及它在实际生产,生活中的应用.

  (二)能力训练点

  1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.

  2.通过推导内角和定理,对学生渗透化归思想.

  3.会根据比较简单的条件画出指定的.

  4.讲解外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.

  (三)德育渗透点

  使学生认识到这些都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.

  (四)美育渗透点

  通过内角和定理数学,渗透统一美,应用美.

  二、学法引导

  类比、观察、引导、讲解

  三、重点・难点・疑点及解决办法

  1.教学重点:及其有关概念;熟练推导外角和这一结论,并用此结论解决与内外角有关计算问题.

  2.教学难点:理解的有关概念中的一些细节问题;不稳定性的理解和应用.

  3.疑点及解决办法:的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画,关键是要分析好作图的顺序,一般先作一个角.

  四、课时安排

  2课时

  五、教具学具准备

  投影仪、胶片、模型、常用画图工具

  六、师生互动活动设计

  教师引入新课,学生观察图形,类比三角形知识导出有关概念;师生共同推导内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.

  第一课时

  七、教学步骤

  【复习引入】

  在小学里已经对、长方形、平形的有关知识有所了解,但还很肤浅,这一

  章我们将比较系统地学习各种的性质和判定分析它们之间的关系,并运用有关的知识解决一些新问题.

  【引入新课】

  用投影仪打出课前画好的教材中P119的图.

  师问:在上图中你能把知道的长方形、正方形、平行、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形).

  【讲解新课】

  1.的有关概念

  结合图形讲解,的边、顶点、角,凸,的对角线(同时学生在书上画出上述概念),讲解这些概念时:

  (1)要结合图形.

  (2)要与三角形类比.

  (3)讲清定义中的关键词语.如定义中要说明为什么加上“同一平面内”而三角形的定义中为什么不加“同一平面内”(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图4―2中的点 .我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制).

  (4)强调对角线的作用,作为的一种常用的辅助线,通过它可以把问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原的关系.

  (5)强调的表示方法,一定要按顶点顺序书写如图4―1.

  (6)在判断一个是不是凸时,一定要按照定义的要求把每一边都延长后再下结论如图4-4,图4-5.

  2.内角和定理

  教师问:

  (1)在图4-3中对角线AC把ABCD分成几个三角形?

  (2)在图4-6中两条对角线AC和BD把分成几个三角形?

  (3)若在ABCD如图4-7内任取一点O,从O向四个顶点作连线,把分成几个三角形.

  我们知道,三角形内角和等于180°,那么的内角和就等于:

  ①2×180°=360°如图4―6;

  ②4×180°-360°=360°如图4-7.

  例1  已知:如图4―8,直线 于B、 于C.

  求证:(1) ; (2) .

  本例题是内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出.

  【总结、扩展】

  1.的有关概念.

  2.对角线的作用.

  3.内角和定理.

  八、布置作业 

  教材P128中1(1)、2、 3.

  九、板书设计

  (一)

  有关概念

  内角和

  例1

  十、随堂练习

  教材P122中1、2、3.

四边形 篇8

  一、教学内容:第34-36页四边形.二、教学目标:1.直观感知四边形,能区分和辨认四边形,知道四边形的特征。进一步认识长方形和正方形,知道它们的角都是直角。2.通过画一画、找一找、拼一拼等活动,培养学生的观察比较和概括抽象的能力,发展空间想象能力。3.通过情境图和生活中的事物进入课堂,感受生活中的四边形无处不在,进一步激发学生的学习兴趣。三、教学重点:认识四边形的共同特点,分辨不同四边形的的不同之处。四、教具、学具:例2的四边形组图每生一份、钉子板、投影仪、三角尺、剪刀、小棒等。五、设计理念:在实际情景中丰富学生对四边形的认识,关注学生的学习过程,培养学生动手能力以及合作与交流的能力,发展空间观念和创新意识;激发学生对数学学习的兴趣。六、教学过程:(一)、出示主题图:1、师:这是哪儿? 在这幅图中你能发现哪些图形?(学生从中找一找图形,一边看一边汇报。)2.师:大家真能干!在我们的校园中,同学们发现了这么多的图形,看来啊,图形在我们生活中无处不在。这节课我们来认识其中的一个图形──四边形,你们愿意和它成为好朋友吗?(板书课题:四边形)(二)、初步感知,发现特征1.师:同学们, 你想像中的四边形应该是什么样的?(指名回答,让学生充分发表意见。)2、师:四边形到底是什么样的图形呢?今天我们进一步来研究。看,数学王国里有这么多的图形(做一做第2题)。把你认为是四边形的涂上相同的颜色,同桌互相检查评价。请学生上台展示。3. 师:观察,我们找出的“四边形”有什么共同的特征吗?(在小组内说一说,学生汇报、互相交流。)师根据学生的汇报,结合图形得出:像这样有四条直直的边围成,有四个角的图形就是四边形,教师板书。师:看着这么多的四边形,现在你能说说到底什么样的图形是四边形?4. 生活中我们见过许多四边形,现在又知道了四边形的特点,你能不能说一说生活中哪些物体表面的形状是四边形的。(三)、动手操作,互动交流1.四边形分类。(1)指导分法。(2)小组合作进行分类。(友情提示:1.请你选择好工具,定好分类的标准。2.分类并用自己喜欢的方式记录。3.四人小组交流,说说你分类的理由。4.推荐一名同学发言。)(3)反馈、交流。各组派代表发言,(实物在黑板上移动展示)说说分法,并说明这样分的理由。(1)按角分:长方形、正方形一类(四个角都是直角);菱形、平行四边形、梯形一类(没有直角)。

  (2)按边分:长方形、正方形、菱形、平行四边形一类(对边相等、正方形的四条边都相等); 梯形一类(对边不相等)。(3)长方形、平行四边形一类(对边相等);正方形、菱形一类(四条边相等);梯形一类(四条边都不相等)。……(4)小结:师:你们分的好极了,都非常有自己的想法。那么我们再来确认一下,到底什么样的图形是四边形?2.围四边形。(钉子板、小棒)现在我们做一个游戏“看谁反应快”(在钉子板上围一个四边形)a.围一个四个角都是直角的四边形。 长方形和正方形是比较特殊的四边形,特殊在哪儿呢?小组里说一说。b.师:围出一个对边相等,但却不是长方形的四边形。(教师下位巡视,及时进行指导。)c.围一个四条边都不相等的四边形。小结:同学们真能干,反应真快。4、动手试一试,把一个四边形剪去一个角后,它会变成什么形状?四、总结:这节课你有什么收获?你学得开心吗?四边形的还有很多知识,我们以后再学。今天放学后,请你们在回家的路上和家中,找出我们的好朋友――四边形,并请爸爸、妈妈一起认识它,好吗?板书:               四边形        有四条直的边         有四个角

四边形 篇9

  【教材分析】

  本节课是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》第1课时《平行四边形的面积》。平行四边形面积的计算是在学生已经掌握并能灵活运用长方形、正方形面积计算公式,理解平行四边形特征的基础上,进行教学的。教材在编排上非常重视让学生经历知识的探索过程,使学生不仅掌握面积计算的方法,更要参与面积计算公式的推导过程,在操作中,积累基本的数学思想方法和基本的活动经验,完成对新知的建构。本节课首先通过具体的情境提出计算平行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何去解决,使学生感到学习新知识的必要性;其次,对学生进行动手操作,自主探索的培养,使学生能寻求解决问题的方法;最后,让学生归纳计算平行四边形面积的基本方法。根据学生的多种剪法,组织学生讨论这些剪法的共同特点,并比较长方形与平行四边形之间的关系,从而推导出计算平行四边形面积的公式。

  【教学目标】

  知识与能力目标:使学生能运用数方格、割补等方法探索平行四边形面积的计算公式,初步感受转化思想;让学生掌握平行四边形面积的计算公式,能够运用公式正确计算平行四边形的面积。

  过程与方法目标:通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思想方法解决问题的能力;创设自主、和谐的探究情境,让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。

  情感态度与价值观目标:通过活动,培养学生的合作意识和探索创新精神,感受数学知识的奇妙。

  【学情分析】

  平行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。这节课,让他们动手实践,在做中学,经历平行四边形面积公式的得出过程,让孩子们体会数学就在身边,培养学生发散思维,进一步激发学生学习思维,进一步激发学生学习数学的热情。

  【教学重点】掌握平行四边形面积计算公式。

  【教学难点】平行四边形面积计算公式的推导过程。

  【教具】两个完全一样的平行四边形、不规则图形、小黑板、剪刀、多媒体及课件。

  【教学过程】

  一、创设情境,引入课题。

  1、游戏:小小魔术师。教师出示不规则图形。

  (1)师:你能直接计算出这个图形的面积吗?

  (2)师:你能计算出这个图形的面积吗?说一说用什么方法?

  (3)师:现在变成了一个什么图形?你能求出这个图形的面积吗?怎样计算长方形的面积?

  2、小结:刚才同学们先将不平整的部分剪下,再平移补到缺口处,就将不规则的图形转化成学过的长方形,这是一种很重要的数学思考方法―转化。把不认识的图形变成了认识的图形。转化后的图形什么变了,什么是相同的?(形状变了,面积相同)

  (设计思路:“温故”是课堂教学起始的重要环节,它起到承上启下的作用。通过出示复习题,唤起学生对已有知识的回顾,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为后面探究平行四边形面积公式的推导打下坚实的基础。)

  二、激趣引思,导入新课。

  师:同学们,昨天早上我听校长说,学校要建一个宣传栏,其中要用一块底是5米,高是4米的平行四边形胶合板。我觉得这是一件好事,因为平行四边形是一种漂亮的图形,你们听了校长的话,想知道些什么?

  生1:我想知道要花多少钱才可以做成。

  生2:我想这个宣传栏建起来一定很漂亮,会把我们的校园点缀得更加美丽!

  生3:我想知道这块胶合板的面积有多大。

  师:我听出来了,大部分同学都想知道这块平行四边形胶合板的面积,这节课我们就来探究“平行四边形的面积”。(板书课题:平行四边行的面积)

  (设计思路:教师选取发生在学生身边的事来创设情境,导入新课,学生感到亲切,从中体会到数学与生活的联系,更能激发求知欲望。)

  三、动手操作,探究发现。

  1、用数方格的方法启发学生猜想平行四边形面积的计算方法。

  师:同学们回忆一下,我们以前是怎么学习长方形面积公式的?(指名复述过程)下面我们用数方格的方法来数出平行四边形的面积。

  教师用课件演示:先出示一个画有方格(每个方格的面积是1平方厘米)的长方形,再将一个平行四边形放在方格图上面,让学生用数方格(不满一格的按半格计算)的方法回答问题。

  (1)这个平行四边形的面积是多少平方厘米?

  (2)它的底是多少厘米?

  (3)它的高是多少厘米?

  (4)这个平行四边形的面积跟它的高与底有什么关系?

  (5)请同学们猜一猜:怎样计算平行四边形的面积?

  2、引导学生把平行四边形转化为长方形,验证猜想推出平行四边形的面积公式。

  我们用数方格的方法得到一个平行四边形的面积,但是用这个方法计算面积方便吗?

  生:不方便。

  师:既然不方便,我们能不能用更方便的方法来解决呢?

  小组交流,学生讨论,发表意见。

  生:用剪和拼的方法。

  师:(出示一个平行四边形)这个平行四边形也可以转化长方形吗?怎样剪呢?剪歪了怎么办?(可以先用尺子画一条虚线。)

  师:这条虚线也就是平行四边形的哪部分?(高)还记得怎样画高吗?

  师:第一步:画;第二步:剪;第三步:移。那我们就动手来剪一剪吧!(学生动手操作)

  师:拼成长方形了吗?拼好了摆在桌面给老师看看,请两个同学来前面展示他们的作品,(指名上黑板前)说说你是怎样操作的?

  (生:我先画条高,沿着高剪开,把这部分移过去,就拼成了一个长方形。)

  师:怎样移过去呀?平着移到右边,这种方法我们把它叫做平移。

  师:再请一个同学展示一下,他的剪法有什么不一样吗?

  (生:我在中间剪的)剪成两个完全一样的梯形,可以吗?平移过去也拼成了一个长方形。 (展示学生的成果)

  师:老师有几个问题,我们把平行四边形转化成了长方形,原来平行四边形的面积和这个长方形的面积相等吗?平行四边形的底和高分别与长方形的长和宽有什么关系呢?

  小组讨论:

  ⑴原来平行四边形的面积和拼成的长方形的面积相等吗?

  ⑵原来平行四边形的底与拼成的长方形的长有什么关系?

  ⑶原来平行四边形的高与拼成的长方形的宽有什么关系?

  师:谁来说说你的想法。它的面积没有多,也没有少,平行四边形的面积等于剪拼后的长方形的面积。(板书)平行四边形的底和高与长方形的长和宽有什么关系?我们看课件演示。(板书:底=长,宽=高)

  师:长方形的面积=长×宽,那么平行四边形的面积怎样求?

  生:平行四边形的面积=底×高(板书)

  师:同意吗?谁能讲一讲,为什么平行四边形的面积=底×高?结合刚才一剪一拼的过程说说。(生叙述方法)

  教师小结方法指名让生叙述。

  师:如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=ah(板书:S=ah)。

  师:现在我们可以确定当初的猜想谁是正确的?

  (设计思路:让学生对“平行四边形面积的计算方法”提出猜想,再进行验证。学生通过自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦。在教学中给学生留足了自主探索的空间,最终达到学习的目的,让学生体验到成功的喜悦。)

  四、实践应用,巩固提高。

  师:同学们,现在你们可以算出建宣传栏要的那块胶合板的面积了吗?(学生独立完成。)

  教师板书:5×4=20(平方米)

  出示例1 (同桌讨论,独立完成,最后全班交流。)

  教师板书:S=ah=6×4=24(平方米)

  师:同学们真会动脑筋,能运用所学知识解决生活中的问题。

  (设计思路:将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识给别人帮忙的过程中着实体验了把成功的快乐。)

  五、分层练习,强化应用。

  1、填空。

  (1)把一个平行四边形转化成一个长方形,它的面积与原来的平行四边形( )。这个长方形的长与平形四边形的底( ),宽与平行四边形的高( )。平行四边形的面积等于( ),用字母表示是( )。

  (2)0.85公顷=( )平方0.56平方千米=( )公顷

  2、计算下面各个平行四边形的面积。

  (1)底=2.5cm,高=3.2cm。 (2)底=6.4dm,高=7.5dm。

  3、解决问题。

  (1)小明家有一块平行四边形的菜地,面积是120平方米,量得底是20米,它的高是多少?

  (2)一块平行四边形钢板,底8.5m,高6m,它的面积是多少?如果每平方米的钢板重38千克,这块钢板重多少千克?

  (设计思路:几道练习题从易到难有一定坡度,通过练习,既巩固了本节课所学的知识,又使不同层次的学生都得到了发展,拓展了学生的思维。)

  六、总结升华,拓展延伸。

  1、教学小结:同学们,这节课你们学会了什么?说一说你知道哪些解决问题的方法?

  (设计思路:通过“说一说”,使学生对本节课所学知识有个系统的认识,可以提高学生的归纳、总结、概括、表达等多方面的能力。)

  2、课后练习

  (1)、练习十五第1题,第2题。(任选一题)

  (2)、解决问题:选一个平行四边形的实物,量出它的底和高,并计算出面积。

  平行四边形的面积练习题

  1、填一填

  (1)1平方米=( )平方分米=( )平方厘米

  (2)把一个平行四边形转化成长方形,它的面积与原来的平行四边形的面积( )。

  转化后长方形的长与平行四边形的( )相等,宽与平行四边形的( )相等。

  (3)平行四边形的面积=( )×( ),字母公式为( )

  (4)一个平行四边形的底是8.5米,高是3.4米,求其面积的算式是( )

  (5)等底等高的两个平行四边形的面积( )

  2、判断

  (1)形状不同的两个平行四边形面积一定不相等( )

  (2)周长相等的两个平行四边形面积一定相等( )

  (3)知道一个平行四边形的底和其对应的高的长度就能求出它的面积( )

  3、一块平行四边形的玻璃,底是50厘米,高是24厘米,它的面积是多少?

  24厘米

  50厘米

  升级跷跷板

  4、有一个平行四边形的面积是56平方厘米,底是7厘米,高是多少厘米?

  5、一快平行四边形的菜地,底是36米,高是25米,每平方米收白菜8千克,这块地共收白菜多少千克?

  6、一个平行四边形的果园,底是30米,高是15米,中了90棵梨树,平均每棵梨树占地多少平方米?

  智慧摩天轮

  7、已知下图中正方形的周长是36厘米,求平行四边形的面积。

  8、一块平行四边形的铁皮的周长是82厘米,一条底长是16厘米,这条底上的高是20厘米,求另一条底上的高是多少厘米?

  平行四边形的面积教案设计

  【教材分析】

  本课为人民教育出版社《义务教育数学五年级标准实验教材》第一课第五单元“平行四边形区域”。平行四边形面积的计算是基于学生对矩形和正方形面积计算公式的掌握和灵活运用,以及对平行四边形特点的理解。在教材的编排上,注重让学生体验知识探索的过程,使学生不仅掌握面积计算的方法,而且参与面积计算公式的推导过程。在操作中,他们积累了基本的数学思维方法和基本的活动经验,完成了新知识的建构。本课首先通过具体情况,提出了计算平行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何解决它,让学生觉得有必要学习新的知识;第二,培养学生独立操作和探索,使学生能够找到问题的解决方案;最后,让学生总结计算平行四边形面积的基本方法。根据学生不同的剪切方法,组织学生讨论这些剪切方法的共同特点,比较矩形与平行四边形的关系,推导出平行四边形面积的计算公式。

  (教学目标)

  知识与能力目标:使学生运用数的平方法和填充法,探索平行四边形面积的计算公式,初步感受变换思想;使学生掌握平行四边形面积的计算公式,并能正确地利用该公式计算出平行四边形的面积。

  过程和方法目标:通过操作、观察和比较,培养学生的空间概念,培养学生运用转化思维方法解决问题的能力;创造独立和谐的探究情境,使学生在不断的尝试中自我展示、自我激励、体验成功,激发求知欲,陶冶情操。

  情感态度与价值目标:通过活动,培养学生的合作意识和探索创新精神,体验数学知识的奇妙。

  【学习情况分析】

  平行四边形面积教学是在学生掌握并灵活运用矩形面积计算公式的基础上,了解平行四边形的特点而进行的。此外,对这部分知识的学习和应用,将为学生学习后的三角、梯形等平面图形的绘制打下良好的基础。由此可见,本课程是促进学生空间概念发展、渗透转化、等体积变形等数学思维方法的重要环节。学好这一部分对于解决生活中的实际问题有着重要的作用。这节课,让他们练习,边做边学,体验画平行四边形面积公式的过程,让孩子们认识到数学就在身边,培养学生的发散思维,进一步激发学生的学习思维,进一步激发学生学习数学的热情。

  【教学重点】掌握平行四边形面积的计算公式。

  【教学难点】平行四边形面积计算公式的推导过程。

  【教学辅助工具】两个相同的平行四边形、不规则图形、黑板、剪刀、多媒体、课件。

  (教学过程)

  首先,创建情景并引入主题。

  1.游戏介绍:小魔术师。老师展示不规则的图形。

  老师:你能直接算出这个图形的面积吗?

  老师:你能算出这个图形的面积吗?告诉我怎么用它?

  老师:现在变成什么样了?你能算出这个图形的面积吗?如何计算矩形的面积?

  2. 小结:刚才同学们把不平整的部分剪掉,然后移动它来填补空白,然后把不规则的图形转换成学习矩形,这是一种重要的数学思维方法――变换。将未知图形转换为可识别的图形。什么改变了转换后的图形?什么是相同的?(形状变化,面积不变)

  (设计思维:“暖过去”是课堂教学开始的重要环节,起着承上启下的作用。通过提出复习问题,激发学生对已有知识的复习,拓宽学生的学习渠道

  平行四边形的面积教案设计

  教学目标:

  (1)引导学生在探究、理解的基础上,掌握面积计算公式,体验其推导过程。能正确计算平行四边形面积。

  (2)通过对图形的观察、比较和动手操作,发展学生的空间观念,渗透转化和平移的思想。

  (3)在数学活动中,激发学生学习兴趣,培养探究的精神,让学生感受数学与生活的密切联系。

  教学重点:

  理解并掌握平行四边形的面积计算公式,并能用公式解决实际问题。

  教学难点:

  理解平行四边形的面积公式的推导过程。

  教具、学具准备:

  课件、长方形和平行四边形图片、剪刀、平行四边形框架等。

  教学过程:

  一、创设情境、导入新课。

  大家请看大屏幕(欣赏绥滨农场风景图片),我们学校门口有两个花坛,小明认为长方形的花坛大,而小刚认为平行四边形的花坛大,谁说的对呢?你想来帮他们评判一下吗?(想)

  你认为要根据什么来确定花坛的大小呢?(花坛的面积)长方形的面积我们会求,那平行四边形的面积我们怎样求呢?这节课,我们就共同来探讨平行四边形的面积。(板书课题)

  出示长方形和平行四边形教具,引导学生观察后说一说长方形和平行四边形的各部分名称。长方形与平行四边形有什么区别呢?(引导学生说出长方形四个角都是直角)(板书各部分名称,标注直角符号。)请大家回忆一下,我们以前学长方形面积公式时用过什么方法来求面积,谁来说一说?我们用过数方格的方式求过长方形和正方形的面积。那我们能不能也用数方格的方式求平行四边形的面积呢?(课件演示)

  二、自主探究,合作验证

  探究一:用数方格的的方法探究平行四边形的面积。

  请大家打开你们的百宝箱(学具袋),里面有老师把两个花坛按比例缩小成的两张卡片,自己判断一下能不能用数方格的方法来求平行四边形的面积,认真按提示填表。出示温馨提示:

  ①在两个图形上数一数方格的数量,然后填写下表。(一个方格代表1,不满一格的都按半格计算。)教师强调半个格的意思。

  ②填完表后,同学们相互议一议,并谈一谈发现。

  你是怎么数的?你有什么发现吗?能猜测一下平行四边形的`面积公式是什么吗?(学生汇报)

  探究二:用割补的方法来验证猜测。

  小明和小刚通过数格子后和我们有了一样的猜测,但为了证实自己的猜测的正确性,想验证一下。同时也想总结出平行四边形的面积公式。你想参与吗?学生小组讨论。(鼓励学生尽量想办法,办法不唯一。)

  我们已经会求哪几种图形的面积了?(预设:学生回答会求长方形和正方形的面积),接着小组合作:大家想想办法,试试能不能把平行四边形转化成我们学过的图形,然后在求它的面积呢?请大家拿起你的小剪刀试试看吧!出示合作探究提纲:(出示教学课件)

  (1)用剪刀将平行四边形转化成我们学过的其他图形。(剪的次数越少越好。)

  (2)剪完后试一试能拼成什么图形?

  师:你转化成什么图形了?你能说一说转化过程吗?转化后的图形和平行四边形各部分是什么关系?下面我们回顾一下我们的发现过程(大屏幕出示):

  回顾发现过程:

  1、把平行四边形转化成长方形后,( )没变。因为长方形的长等于平行四边形的( ),宽等于平行四边形的( ),所以平行四边形的面积=( ),用字母表示是( )

  2、求平行四边形的面积必须知道平行四边形的( )和( )。

  探究过程小结(板书)

  师:小刚和小明马上到校门前测量了长方形和平行四边形。得出:长方形的长是6米,宽是4米,平行四边形的底是6米,高是4米。

  然后他们手拉手找到老师说了一些话。你知道他们说了什么?

  生:长方形和平行四边形的面积一样大。为什么会一样大?谁来讲解一下。(指名板演)

  三、运用新知,练中发现

  1、基本练习

  (1)口算下面各平行四边形的面积

  A、底12米,高3米:

  B、高4米,底9米;

  C、底36米,高1米

  通过这组练习,你有什么发现吗?(教学课件)

  发现一:发现面积相等的平行四边形,不一定等底等高。

  (2)画平行四边形比赛(大屏幕出示比赛规则)

  比赛规则:

  1、拿出百宝箱中的方格纸。在方格纸上的两条平行线间,画底为六个格(底固定),看能画出多少个平行四边形。

  2、谁在一分钟之内画的多,谁就获胜。学生画完后(用实物展示台展示,引导学生发现)

  发现二:1.发现只要等底等高,平行四边形面积就一定相等。

  2.等底等高的平行四边形,形状不一定完全相同。

  四、总结收获,拓展延伸

  1、通过这节课的学习,你知道了什么?

  2、小明和小刚学完这节课后把他们的收获写了下来,你们想知道是什么吗?

  大屏幕出示(教学课件演示)

  平行四边形,特点记心中。

  面积同样大,形状可不同。

  等底又等高,面积准相同。

  要是求面积,底高来相乘。

  (齐读)希望同学们也要向小明和小刚一样,经常把学过的知识进行总结,做一个学习上的有心人。

  拓展延伸

  请大家看老师的演示。(用平行四边形框架演示由长方形拉成平行四边形)。如果把长方形拉成平行四边形,周长和面积有没有变化呢?课后我们可以小组合作,亲自动手做实验进行研究,并把发现记录下来,作为今天的作业。

  五、板书设计:

  平行四边形的面积教案设计

  1.进一步认识平行四边形是中心对称图形。

  2.掌握平行四边形的对角线之间的位置关系与数量关系,并能运用该特征进行简单的计算和证明。

  3.充分利用平面图形的旋转变换探索平行四边形的等量关系,进一步培养学生分析问题、探索问题的能力,培养学生的动手能力。

  教学重点与难点

  重点:利用平行四边形的特征与性质,解决简单的推理与计算问题。

  难点:发展学生的合情推理能力。

  教学准备直尺、方格纸。

  教学过程

  一、提问。

  1.平行四边形的特征:对边( ),对角( )。

  2.如图,在平行四边形ABCD中,AE垂直于BC,E是垂足。如果∠B=55°,那么∠D与∠DAE分别等于多少度?为什么? (让学生回忆平行四边形的特征。)

  二、引导观察。

  1.按照课本第30页“探索”画一个平行四边形ABCD,对角线AC、BD相交于点O,量一量并观察,OA与OC、OB与OD的关系。

  2.在如课本图12。1。3那样的旋转过程当中,你观察到OA与OC、OB与OD的关系了吗?

  通过探索,引导学生得出结论:OA=OC,OB=OD。同时又引导学生说出平行四边形的特征:平行四边形的对角线互相平分。

  (培养学生用自己的语言叙述性质。)

  三、应用举例。

  如图,在平行四边形ABCD中,两条对角线AC、BD相交于点O。指出图中相等的线段。

  (引导学生得出结论:AO=OC,OD=OB,AB=CD,AD=BC。本题目的是让学生初步掌握平行四边形对角线互相平分以及对边相等的应用。)

  例3如图,在平行四边形ABCD中,已知对角线AC和BD相交相于点O,△AOB的周长为15,AB=6,那么对角线AC与BD的和是多少?

  (本题应让学生回答,老师板演。注意条理性,进一步培养学生数学说理的习惯与能力。)

  四、巩固练习。

  1.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,已知AC=26厘米,BD=20厘米,那么AO=( )厘米,OD=( )厘米。

  2.在平等四边形ABCD中,对角线AC与BD相交于点O,已知AB=3,BC=4,AC =6,BD=5,那么△AOB的周长是( ),△BOC的周长是( )。

  3.平行四边形ABCD的两条对角线AC与BD相交于点O,已知AB=8厘米,BC =6厘米,△AOB的周长是18厘米,那么△AOD的周长是( )厘米。

  4。试一试。

  在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺度量出平行线之间的垂线段的长度。得到平行线又一性质:平行线之间的距离处处相等。

  5.练习。

  如图,如果直线l1∥l2.那么△ABC的面积和△DBC的面积是相等的。你能说出理由吗?你还能在两条平行线I1、l2之间画出其他与△ABC面积相等的三角形吗?

  五、看谁做得又快又正确?

  课本第34页练习的第一题。

  六、课堂小结

  这节课你有什么收获?学到了什么?还有哪些需要老师帮你解决的问题?

  七、作业

  补充习题

  平行四边形的面积教案设计

  平行四边形的面积计划学时1

  学习内容分析

  学生已经了学习长方形,正方形,三角形的面积,而本节课开始怎样计算探究平行四边形的面积,计算平行四边形的面积既是对之前学过的知识的延续又是对接下来学习梯形等面积的铺垫。因此,学好它既能对旧知识的迁移又能为今后的学习打下基础。

  学习者分析

  根据心理学知识该阶段的学生知识迁移能力有待提高,空间想象能力,观察能力,动手操作能力较强,

  教学目标知识与技能1、认知目标:通过学生观察、讨论、动手体验,使学生理解并掌握平行四边形面积计算公式,并能解决实际问题,培养学生小组合作能力。

  2、能力目标:通过操作观察比较发展学生的空间观念,学生初步认识转化的思考方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  3.情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。

  过程和方法:合作学习,自主探索

  情感态度与价值观让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。

  知识点学习水平媒体内容与形式使用方式使用效果

  平行四边形面积的计算还未学平行四边形面积公式,但已经学习了三角形,长方形面积公式让同学先自己试图转化计算,然后在ppt展示平行四边形与长方形的转换过程在ppt展示平行四边形与长方形的转换过程使得同学更形象生动了解长方形和平行四边形之间的转换,有利于同学推导出平行四边形的面积公式

  课后练习同学们已经学习了平行四边形的面积但还未实践应用在ppt展示练习题在ppt展示练习题同学更形象生动了解平行四边形公式,有利于同学的学习

  教学过程

  教学环节教学内容所用时间教师活动学生活动设计意图

  展示出长方形问同学这样拉回变成生命形状,生命改变了,什么没有改变为平行四边形的讲解和本节课的内容铺垫5分钟展示出长方形并通过拉其一端展示出平行四边形,同时扔出疑问给同学解决,为本节课做铺垫学生通过想象观察配合课堂进行由生活中学生熟悉的事物引入新知,激发起学生的学习兴趣,增强了学生的探索欲望和积极性,同时为新知的学习做好了情感铺垫

  让同学们通过已经学习的知识计算平行四边形的面积

  同学们通过已经学习的知识计算平行四边形的面积,运用旧知识迁移的方法计算,巩固旧知识12分钟教师下去巡视同学做的情况,进行总结,然后再在ppt展示学生通过已经学习的知识在小组讨论下用不同的方法计算出平行四边形的面积这一环节充分发挥学生学习的主体性,培养学生的探索精神,为学生提供了开放的探索时间和空间,鼓励创新、发现;放手让他们去操作、去探索,使学生获得战胜困难,探索成功的体验。从而产生学习数学的兴趣,建立学习数学的信心。这样做完全把学生当作学习的主题,体现了活动化的数学学习过程,可以有效提高课堂教学效率与质量。

  通过ppt的转换总结得出平行四边形面积公式平行四边形面积公式的推导15分钟教师在ppt展示各种转换方法也把长方形转换平行四边形展示出来引导同学说出平行四边形的面积对刚刚的学习进行总结,得出平行四边形的面积运用生动形象的课件,再一次演示其中一种方法的验证过程.并介绍平行四边形的"高"和"底".让学生体验将平行四边形转化成长方形的过程,加深学生对图形转化的理解,并在具有挑战性的活动中激发学生参与探究活动的兴趣

  对平行四边形公式进行巩固练习同学已经学平行四边形的公式但还未实际应用8分钟教师根据学生所学情况在ppt展示所对应练习题学生根据所学的知识做练习巩固知识点通过总结,疏理知识,帮助学生深化知识的理解掌握,进一步建构完整的知识体系;另外,学生学会自我评价,互相评价,体验成功,增强学好数学的信心

  课堂教学流程图

  教学过程

  一、情境创设,揭示课题

  师:同学们,你们看老师手上拿的什么形状?如果老师现在固定这个端点,再将右边这个端点向右拉,你们想象一下,它会变成什么形状呢?

  生:平行四边形

  师:对了,就是平行四边形,你们在这个过程中什么改变了什么没有发生改变呢?

  生:形状,角度,面积

  师:那面积是变大还是变小

  生:此时回答不一

  教师根据学生的回答,选出本节课的研究任务,揭示课题“我们就共同研究一下,平行四边形的面积。(板书)

  二、创设问题情景,引发自主探索.

  1、提出问题,鼓励猜测

  那么大家猜一猜平行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个平行四边形,(演示)还可能与什么有关?(高)那么平行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。

  2、自主探究、验证猜测:

  师:用剪刀把平行四边形剪成已经学习过的图形来计算他的面积,想一想你打算用什么方法来计算?

  3、展示成果,互相交流

  同学的计算方法不一,抽取最简单的进行讲解,引出数格子的方法,让同学们总结长方形面积和平行四边形的面积关系

  指名上前演示并表述用方格图数两个图形面积的过程和方法,并展示填写的表格。

  方法二:转化法

  师:有什么发现?

  师:你们成功的把平行四边形转化成了长方形,这一长方形与原来的平行四边形有什么关系?

  生:长方形的长等于平行四边形的底、宽等于平行四边形的高

  师:是这样吗?师课件演示解说强调平移

  师:还有其他的剪拼方法吗?

  4、整理结论

  师:你是怎么剪的?沿什么剪的?为什么要沿高剪开?拼出的长方形和原来的平行四边形之间,你发现了什么?

  提问:(1)平行四边形转化成长方形,面积变了吗?

  (2)方形后的长和宽分别与平行四边形的底和高有什么关系?

  (3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?

  师:你们觉得这几种方法有没有共同之处?

  (都是沿高剪开的,都是把平行四边形转化成长方形)

  课件演示,结合课件填写各部分间的相等关系。

  板书:底=长高=宽长方形的面积=正方形的面积

  师:我们一起读一下我们发现的结论。

  师:请同学们翻开书自己看书学习81页倒数第2自然段的内容。

  师:你学到了些什么?

  师:如果用表示S平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的计算公式可以写成:S=ah

  三、方法应用

  师:现在我们来算一下这块平行四边形草坪的面积是多少?(大屏幕中的字母全部去,换上数据底6厘米,高4厘米。)

  师:这个平行四边形的面积大家会算吗?请你在自己的本子上计算一下。(生独立计算,选一个快的,正确的上台板书)

  师:这个6是什么?(a),4呢?(h),那么底和高求出来的是什么?(S)。你后面用的单位为什么是平方厘米呀?

  四、梳理知识,总结升华

  师:这节课同学们通过猜想发现平行四边形的面积等于底乘高,并且经过验证证明了你们的猜想是正确的。对于这节课学习的内容你们有没有什么问题或不明白的地方?能说说这节课,你是怎么学习的?你有哪些收获吗?

  五、课堂检测

  修改建议

  结合你对教学设计的想法,可以对教案模板进行修改,以便更符合你教案内容。

四边形 篇10

  第一课时

  教学目标

  1、创设学生自主探索平行四边形面积计算方法的学习情境,通过实践操作,猜想验证,交流讨论等学习形式,推导出平行四边形面积计算的公式,并能运用公式计算平行四边形的面积,解决一些实际生活中的面积计算问题。

  2、通过操作、交流,观察、比较,使学生能运用转化思想发现求平行四边形面积的方法,培养学生发现问题、提出问题、分析问题、解决新问题的能力,发展学生的空间观念。

  3、渗透转化思想,激发学生探索问题、发现问题的情趣,培养学生的创新意识、数学应用意识和实践能力。

  教学重、难点: 理解平行四边形面积公式的推导过程与转化思想。

  教学过程

  创境激趣

  1、组织谈话

  师:上节课我们已经认识了平行四边形,同学们都学了哪些知识,谁还记得。

  生:两组对边分别平行的四边形叫平行四边形。

  生:认识了平行四边形的高。

  2、媒体演示

  (出示课件:小山羊的困惑。配音:一只莽撞的小山羊把一个长方形撞倒了,变成了一个平行四边形,于是小山羊就发现了一个问题,是什么问题呢?)

  师:现在你能发现什么问题呢?

  生:为什么会变成平行四边形呢?面积是否变了呢?

  师:小山羊到底发现了什么问题?你们想不想知道呢?

  探究学习

  (一)1、出示问题:现在的平行四边形是多少呢?

  生猜想。

  2、师:下面就用你自己手中的学具,试着把平行四边形转化成我们已经学过的图形。

  (小组合作,4人一组,然后在全班汇报)

  (二)交流汇报

  师:你转化后的图形是什么?你是怎么转化的呢?谁能大胆的上来说一说。

  生:是长方形,我是沿着高剪的。

  师:你为什么这样剪,不沿着高剪开行不行?

  生:长方形的四个角都是直角,所以只有沿着高剪开才能转化成长方形。

  师:这个长方形和原来的平形四边形个部分之间有什么关系呢?同学们仔细观察(媒体演示转化的过程:找出底,画高,剪开,平移,拼补,转化成了长方形)。

  结论确立

  师:长方形和原来的平行四边形有什么关系?

  生:转化后的图形是长方形,我发现长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积是底乘高。

  师:谁再来完整的说一遍。

  师:我们通过转化推导出来的面积计算公式和书本上的一样。同学们真是了不起,会自己发现数学知识了。

  师:平行四边形的面积计算公式还可以用字母表示呢?你知道怎样表示吗?(学生说,教师板书)

  生:公式是s=ah

  师:通过刚才的学生,我们知道了平行四边形面积计算的公式,下面一起来解决一些具体的实际问题。

  训练巩固(24页)

  1.口算试一试。

  2、独立完成练一练1题。展示订正。

  师:你们发现什么?

  生:只要找到一组对应的底和高,就能计算出平行四边形的面积相等。

  3、比较面积

  师:下面三个平行四边形哪个大?为什么?

  生:不相等,因为一个宽,一个窄。

  生:相等,因为它们的底相同,高也相等。所以面积相等。

  师:为什么高相等?

  生:因为它们在一组平行线间,距离相等,所以高相等,

  等底等高,所以面积相等。

  反思提高

  1、这节课我们共同研究了什么?(板书课题 :平行四边形的面积计算)

  2、你有什么收获?

  3、今天,我们用转化割补法学习了平行四边形面积计算,希望同学们把它运用到今后的学习生活中去,真正做到学习致用。

  练习

  教学目标

  1、进一步掌握平行四边形的面积计算方法,并能过用所学知识解决一些实际问题。

  2、进一步探索平行四边形的面积与底和高的关系。

  教学重点

  运用所学知识解答有关平行四边形面积的问题。

  教学过程

  一、基本练习

  1、画高,找出平行四边形的底和高。

  (1)让学生利用方格纸,画几个平行四边形,然后标出每个平行四边形的底和高。

  (2)教师用实物投影展示学生的作品。

  2、平行四边形面积计算。

  (1)说一说平行四边形面积计算方法。

  (2)用字母表示平行四边形面积计算公式。

  板书:s=ah

  (3)计算下列图形面积。[如图2―7(a~c)所示]

  二、专项练习

  1、第1题。

  (1)学生画出平行四边形的底和对应的高;

  (2)测量底和高的长度,并计算面积。

  2、第2题。

  (1)观察图形,试说每个平行四边形的底和高分别是多少。

  (2)计算每个平行四边形的面积。

  (3)提问:你有什么发现?

  通过交流,使学生理解平行四边形状不同、面积相同的道理。

  (4)讨论:两个平行四边形相等时,它们的底与高是否一定相等?

  3、第3、4题。

  (1)让学生独立完成,同桌间互相交流。

  (2)全班反馈,发现问题及时纪正。

  三、巩固练习

  1.一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?

  ⑴生独立列式解答,集体订正。

  ⑵如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?①必须知道哪两个条件?

  ②生独立列式,集体讲评:

  先求这块地的面积:250×780÷10000=1.95公顷,

  再求共收小麦多少千克:7000×1.95=13650千克

  ⑶如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?

  与⑵比较,从数量关系上看,什么相同?什么不同?

  讨论归纳后,生自己列式解答:58500÷(250×78÷1000)

  ⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。

  2.练习:下图各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?

  1.6厘米

  2.5厘米

  ⑴你能找出图中的两个平行四边形吗?

  ⑵他们的面积相等吗?为什么?

  ⑶生计算每个平行四边形的面积。

  ⑷你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)

  3.已知一个平行四边形的面积和底,(如图),求高。

  28平方米

  7米

  分析与解:因为平行四边形的面积=底×高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。

  三、小结,自我评价。

四边形 篇11

  在上“探索活动(一)平行四边形的面积(新世纪版教材五年级上册)”一课之前,除了自己“精心准备”好了教学设计以外,还让学生带上了“综合实践活动材料袋”与剪刀。一切妥当,轻装上阵。

  师:前几节课咱们用了很多种方法,解决了“比较图形的面积”和“地毯上的图形面积”一些问题。现在还有一个任务需要你们帮忙解决。

  (学生屏住了呼吸,瞪大了眼睛看住我。嘿嘿,就知道你们好奇,逗你呐!)

  师:学校想在教导处门前的那个长方形花坛里,设计一个这样形状的图案(把底4m高3m的平行四边形纸片放到了实物投影仪上),现在想请你计算出这个图案的面积。你们有办法解决吗?

  (学生迟疑了几秒钟,我提示从材料袋中拿出一个平行四边形来观察)

  生1:可以用数方格的方法来数一数。

  (哈哈,正中我下怀!因为材料袋里有透明的方格片,加上前几节课的基础,学生很容易想到这个方法。)

  师:可以啊,那你们就数一数是多少吧。

  (大多数学生纷纷开始用方格片套住平行四边形,准备数数啦。)

  生2:数什么啊?这个方法太笨了!真要是在花坛里,有那么大的方格片吗?

  (说话的是绰号“猴子”的侯波涛。这小子思维特敏捷,就是发言太随意,往往脱口而出。听他这么一嚷,学生们都停止了动作看着他,随后又都看着我。有几个学生小声嘀咕着“就是啊,就是啊!”这个环节我真没有想到这么快就到了,原打算让学生数过后我来提示过渡一下,结果竟让这小子一句道破啦。我略一沉思)

  师:咱们不是为了便于研究,把它缩小变成纸片了嘛。再说了,“笨方法”也是一种方法嘛。

  (听我这样一说,很多孩子来了劲。纷纷嚷道“就是啊,这叫做方法多样化”。呵呵,这帮孩子四年来还真学会了不少新名词啊。我话锋一转)

  师:不过,侯波涛说的也很有道理,这种方法是有点麻烦呐。那你有什么好办法?

  侯:用剪刀把这个角剪掉,然后把它拿到另一边拼成一个长方形,计算出长方形的面积就是平行四边形的面积。

  (这家伙得意洋洋的拿着一个平行四边形比划着。在上节课“动手做”中,有“用一块平行四边形的木板做尽可能大的长方形桌面”情境,学生已经有了这方面的经验,但是很多学生并没有想到迁移到这方面上来。所以,“一石激起千层浪”,很多大部分学生都直点头。)

  生3:那要是真的在花坛里你怎么剪啊?

  (晕啦,还真有如此抬杠的学生。得,这叫做“以其人之道还治其人之身”!侯波涛不好意思的笑了,同学们也都笑了。)

  侯:那刚才老师不是说了吗?为了便于研究变成纸片了嘛。

  (嘿~这小子真会找台阶啊!我赶紧打圆场吧。)

  师:我们在解决生活中的一些问题时,为了便于研究,常常需要把它缩小或者放大的。现在就请同学们用自己喜欢的方法,探索出这个平行四边形的面积吧。

  (也许是侯波涛说的“这个方法太笨了”那句话起了导向的作用,这次没有一个用数方格的方法,都是在用割补平移的方法转化成一个长方形。但是我巡视时看到学生在操作时,几乎都是沿着高剪开后直接拿到另一边拼凑,有的还在转来转去找不到地方。在教学设计的时候我只注重了对教学内容的预设,而忽略了学生操作的规范性。)

  师:谁愿意到前面来把转化的过程,边演示边说过大家听?

  (不少学生嚷道“我来!”,“小胖墩”李京都急得站了起来跃跃欲试那就让你来吧。)

  李:这么一剪 。

  师:怎么剪的?能说准确些吗?

  (下面有的学生嚷道“沿着平行四边形的高剪!”)

  李:沿平行四边形的高剪开,把它拿到另一边就拼成了一个长方形。

  师:我理解你的意思!但是你能用咱们学过的数学语言来表述出这个转化过程吗?下面的同学也可以补充。

  (他怔了一下,下面的同学也都安静了下来。我用手势从左向右平行移动比划着)

  师:在三年级的时候,我们把这个动作叫做什么?

  (学生们恍然大悟!纷纷叫道“平移!平移!”)

  师:那你能把这个过程说一遍吗?同位的同学相互边演示边说过程。

  (学生把以前学过的数学术语用到了这里,感觉很兴奋。)

  师:有与他的剪法不一样的吗?上来演示给大家看一下。

  (很多学生跑到前面来演示。尽管剪的位置不同,但是说法都是一样的。)

  师:现在,自己先观察一下,拼成后的长方形与原来的平行四边形有什么样的关系呢?然后在小组内交流一下意见。

  (汇报的时候,两个小组的学生都仅仅说出了拼后的图形与原来的图形面积相等,问道“那怎样求平行四边形的面积?”,学生回答“只要计算出长方形的面积就知道了平行四边形的面积”。于是我开始怀疑自己先前提出的问题是不是过于大了或者指向性不明确?以至于学生仅仅关注于面积而忽略了长方形的底高与平行四边形的底高之间的联系?)

  师:那是不是我们在计算每个平行四边形面积的时候,都先要把它转化成一个长方形呢?

  (不少学生都点头表示赞同。)

  生:这个方法太笨啦!(说话的又是侯波涛!)

  师:那你说怎么计算啊?(我有点迫不及待了。)

  侯:直接用平行四边形的底乘高。

  师:为什么啊?(我开始兴奋啦!)

  侯:因为长方形的长可以看作平行四边形的底,宽看作高。所以平行四边形的面积就等于底乘高。

  师:你太聪明啦!你是这节课最棒的探险家!(真的是打心眼里佩服这小子的聪明)

  学生笑了,掌声自发地响了起来……

  反思:原先设计好的教学步骤被不循规蹈矩的学生们打乱了,只好顺势展开教学;原先没有预设到的不规范的操作情况出现了,只有随机调整教案加以指导;原先以为很简单的推论,在学生那里却变成了一个难点。这一切都要求我们教师在教学设计时要实施弹性设计,给自己和学生留出更大的空间,根据教学中生成性的资源及时调整自己的教学行为,随时注意学生所传达出来的信息,适时点拨,点燃学生想说、想表现的欲望。关注了课程的生成,也就关注了学生的发展!

四边形 篇12

  一、说教材

  (一)教学内容

  义务教育六年制小学数学课本(试用)第八册第三单元“平行四边形、三角形和梯形”中的“平行四边形的面积计算”。

  (二)教材分析:

  平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。

  教材在编写时注意培养学生实际操作能力。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和。

  在引导学生动手操作的基础上,初步培养学生的空间想象力和思维能力。使他们从“学会”到“会学”,培养学生良好的学习习惯和学习品质。教学中以长方形的面积公式为基础,通过学生比一比、看一看、动一动、想一想得出平行四边形的面积公式,并来在实际生活中用一用。

  几何初步知识的教学是培养学生抽象概括能力、思维能力和发展空间观念的重要途径。本节教学中向学生渗透了平移旋转的思想,为将来学习图形的变换积累一些感性认识。

  (三)学生分析:

  学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

  (四)教学目标预设:

  结合本节课所学知识特点和学生的思维特点现拟定如下目标:

  1.知识目标:通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。

  2.能力目标:在比一比、动一动中发展空间观念;在看一看、想一想中初步感知等积转化的思想方法,提高解决问题的能力。

  3.过程与方法目标:通过实践感性认识理性认识实践应用的辩证唯物主义思想方法教学,培养互相合作、交流、评价的意识。

  4.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。

  (五)教学重点、难点及关键点剖析:

  通过实践理论实践来突破掌握平行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点平行四边形面积公式的推导。关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出长方形等积转化成平行四边形。

  (六)教具、学具准备:

  多媒体、平行四边形,学生准备任意大小的平行四边形纸片、三角板、剪刀。

  二、说教法、学法

  (一)设计理念:

  《数学课程标准》提出了重视学生学习过程的全新理念,要充分发挥学生的主观能动性,让学生参与知识发生发展的全过程。教师在课堂教学中应尝试采取多种手段引导每一个学生积极主动地参与学习过程。

  “问题是数学的心脏。”、“问题是一切思维的起点。”在教师创设的情境中,学生利用原有的知识和技能无法直接解决问题,就会产生认知上的矛盾、内在的需要和学习的驱动力,从而积极、主动地去学习。

  数学学习活动是一个以学生已有知识和经验为基础的主动建构过程,学习者能否主动建构形成良好的认知结构,取决于原有的认知结构里是否具有清晰、可同化新知识的观念,以及这些观念的稳定情况,所以教师不仅应从整体上把握教材知识结构,而且应从纵向考虑新旧知识是如何沟通联系的。

  每个人都以自己的方式理解事物的某些方面,学习过程要增进学习者之间的合作,使其看到那些与自己不同的观点,完善对事物的理解,教师是意义建构的帮助者、促进者,而不是知识的提供者和灌输者,应成为学生学习的高级伙伴或合作者。教师应重视师生之间、生生之间的相互作用,通过创设情境和组织学生合作与讨论,使学生认识事物的各个方面,在已有知识和经验的基础上建构新知识。

  学生是学习的主人,新课程要求遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历知识的形成过程。未来的社会既需要学生具有获取知识的能力,也需要学生具有应用知识的能力,而知识也只有在能够应用时才具有生命力,才是活的知识。

  (二)说教法

  本节课教法上最大的特点是让学生动手操作,把静态知识转化成动态,把抽象数学知识变为具体可操作的规律性知识。指导学生理论联系实际,开展多次讨论,使他们自主、快乐地解决问题。

  在本节课中,我还力图体现出学生学习方法的转变:从被动接受学习变为在自主、探究、合作中学习。让学生自己提出问题,再自己想办法解决,并能以小组为单位共同合作完成;让学生亲身体验知识的形成过程,促进学生思维的发展。

  在导入部分我采用了创设生活情境,设疑引入的方法来激发学生的学习兴趣,这为充分发挥学生主体作用奠定了基础。

  在探究过程中,我很重视学生动手操作、自主探索和合作交流的学习方式,大胆放手,给学生时间和空间,让他们在熟悉的具体情境中,通过探究和体验,感受新知;联系生活经验,构建新知;小组合作交流,扩展新知;创新活动设计,超越新知。

  (三)说学法

  坚持“发展为本”,促进学生个性发展,并在时间和空间诸方面为学生提供发展的充分条件,以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,注意引导学生怎样有序观察、怎样操作、怎样概括结论,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。使学生通过自己的努力有所感受,有所感悟,有所发现,有所创新。

  小学生学习的数学应该是生活中的数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。

  “学以致用”是学习的出发点和归宿点,也是学习数学的终结所在。让学生感到数学的有趣和可学,我们还应注重将数学知识提升应用到生活中,提高学生处理问题的实际能力,让学生真正做到会学习、会创造、会生活的一代新人,让数学课堂真正成为学生活动的、创造的课堂。

  三、教学过程

  为了更好地完成本节课的教学任务,突出重点,突破难点,抓住关键,教学过程分为以下几个教学环节:

  (一)创设情境,设疑引入

  王林家和张强家各有一块地,如图:

  4米 4米

  王林家 张强家

  6米 6米

  可是谁家的地面积能大些呢?他俩都想知道,同学们,你们愿意帮助他们吗?大家先猜猜看?让学生猜想长方形和平行四边形面积的大小?为什么?主要是向学生暗示了当长方形与平行四边形长与底,宽与高分别相等时,它们的面积会相等,初步感知到平行四边形的面积与底和高有关。王林家的`地是长方形,我们能求出面积。而张强家的地是平行四边形,怎样来求平行四边形的面积呢?这就是我们今天要研究的平行四边形的面积计算。

  这样设计,由生活中的问题很自然地把学生带入新知的学习环节,使学生完成了学习新知的心理准备成为一名探索者,为充分发挥学生主体作用奠定了基础。

  (二)操作探索,推导公式

  1、数方格法求面积(出示)

  给上面的二块地的长、宽与底、高分别缩小100倍(变成了6厘米和4厘米)再加上网格,如上图,(不满一格按半格计算,每小格表示1平方厘米)数完后,你发现了什么?

  这样设计,让学生掌握用数来计算平行四边形面积的方法,进一步证实自己的猜想是正确的,初步感知到了平行四边形的面积=底×高。

  2、动手实践,推导公式

  ①实践操作

  教师启发谈话,如果要求在实际生活中平行四边形的面积,经常用数方格这种方法方便吗?这就需要寻找一种更简单的方法。那么平行四边形的面积到底与什么有关?再通过出示:当平行四边形的高不变,它的面积随着底边的缩小而缩小,说明平行四边形的面积与底有关;当平行四边形的底不变,它的面积随着高的缩小而缩小,也说明了平行四边形的面积与高有关。我们已学过了长方形和正方形的面积计算公式,能不能根据已掌握的知识来解决新知,求出平行四边形的面积呢?然后让学生实践操作,想办法把平行四边形转化成长方形。要鼓励学生多角度思考问题,再通过合作交流,能想出各种方法将平行四边形转化成长方形。

  让学生通过动手操作拓展了学生思维的空间,这样不仅强化平移转化方法在实际中的应用,也大大提高了学生运用已有知识解决实际问题的能力,注重了知识的获得过程。

  ②归纳方法

  提问:剪拼后的长方形与原来的平行四边形有什么关系?平行四边形的面积怎样计算?为什么?用字母怎样表示?

  在这个环节中主要采用了动手操作、自主探索和合作交流的学习方式,通过动手操作、探索,充分发挥学生学习的主体,培养学生探索精神,使学生获得战胜困难,探索成功的体验,从而产生学习数学的兴趣,建立学习数学的信心。这样做完全把学生当作学习的主体,体现了活动化的数学学习过程,有效地提高了课堂教学效率与质量。

  3、学习例题

  例 一块平行四边形的草地,底是18米,高是10米。这块草地的面积是多少?

  这道例题及时地巩固了所学知识。

  (三)巩固练习,应用深化

  1.现在我们不用数方格的方法,也能知道王林家和张强家地面积的大小了。并完成P71 试一试

  2.完成P71练一练1、2

  3.选择正确的算式:

  求出下图的面积(单位:分米)

  A.12×5( ); B.12×10( ); C.10×6( ); D.5×6( )。

  4.猜谜游戏:

  有一个平行四边形,它的面积是12平方分米,请你猜一猜它的底和高各应是多少分米?看谁猜出的答案最多。

  并说明等以后学习了分数乒,还会有更多的答案。

  5.思考题

  用铁丝围一个右图这样的平行四边形,至少需要用多长的铁丝?

  (单位:厘米)

  (四)全课总结,质疑问难

  让学生说说本节课学到的知识,并说说是怎样学到的,还有什么问题要与教师或同学们商讨吗?目的是使学生对本节课所学的知识有一个系统的认识,培养学生整理知识的能力,和质疑问难的能力。

  附板书设计: 长方形面积= 长×宽

  平行四边形面积= 底×高

  四、说预设效果

  这节课的设计,给学生充足的眼看、手做、耳听、嘴说、脑想的时间和空间,学生在实践中理解新知,并尽可能地从多角度来验证结论,这使学生求异思维和创新能力得到最大限度的训练。培养了学生动手操作能力,逻辑思维能力,使学生掌握学法,为学习提供一把释疑解难的钥匙。

四边形 篇13

  教 学 分 析

  本节课是在学生已经认识长方形、正方形的基础上进行教学。重点是让学生通过亲自观察、动手测量、比较掌握长方形、正方形的特点,初步认识平行四边形。

  教 学 目 标

  知识与 技能

  引导学生观察长方形、正方形的边、角的特点,认识长方形和正方形的共性及各自的特性。会在方格纸上画长方形、正方形,并认识平行四边形。

  过程与 方法

  学生通过观察比较、动手操作、交流合作等活动发现长方形和正方形的特点,积累感性认识,初步认识平行四边形。

  情感态度价值观

  培养学生积极参与的学习品质,使学生获得成功的体验,感受教学与日常生活的密切联系,树立学好数学的信心。

  教学策略

  创设情景 动手实践 交流合作

  教具学具

  多媒体课件、长方形、正方形、格子纸、三角板

  教 学 流 程

  教师活动

  学生活动

  一、 创设情景,提出问题

  今天,我们的好朋友智慧星要带领大家到图形王国去参观。参观之前提一个小小的要求,请你仔细观察、多动脑筋。(多媒体演示图片)你能说出这些事物中你认识的图形吗?(抽出长方形、正方形。引出课题)

  二、 协作探索,研究问题

  1. 教学长方形、正方形

  (1) 多媒体出示长方形、正方形:请大家仔细观察他们各有几条边,几个角?

  (2) 教学对边的概念:

  在生活中我们把两个人面对面叫做对面,在长方形中上下两条边我们把它们叫做对边、左右两条边也叫对边。(多媒体演示)

  (3) 小组合作研究长方形、正方形的特点

  下面请大家利用你手中的工具量一量、折一折、比一比,和组内同学说一说,你自己手中

  观察汇报

  观察汇报

  学习对边的概念

  小组合作

  动手操作

  长方形的对边和正方形的边有什么特点,角有什么特点?

  (4) 指名汇报,并演示自己发现的过程。

  共同总结:长方形和正方形都是四条边围成的图形,它们都是四边形,它们的每个角都是直角,长方形的对边相等,正方形的四条边都相等。

  (5) 在方格纸上画出长方形、正方形

  2. 教学平行四边形

  (1) 多媒体演示:在生活中我们还会看到这样一些图形,它们是长方形吗?是正方形吗?

  我们把这样的四边形叫做平行四边形。

  (2) 平行四边形的特点:

  出示格子图中平行四边形:引导学生观察,用数格子的方法数一数你发现平行四边形的对边有什么特点?

  (3) 总结:平行四边形有四条边,四个角,对边相等。

  (4) 动手操作:拿出活动的四边形:拉动之后你发现了什么?

  汇报总结

  动手实践

  观察认识平行四边形

  观察思考发现特点

  动手操作

  三、 运用知识,解决问题。

  1. 猜一猜。(多媒体演示)

  2. 找一找。(多媒体演示)

  3. 说一说。

  四、 总结。

  你今天从智慧星那里学到了什么?

  练习巩固

  总结交流

  板书设计 :

  长方形 正方形 和 平行四边形

  边: 4条 4条 4条

  对边相等 全都相等 对边相等

  角:4个直角 4个直角 4个

四边形 篇14

  教学内容:北师大版p23-24平行四边形的面积

  教学目标:

  知识与技能:通过学生自主探索、动手实践的过程中,经历推导平行四边形的面积计算公式的过程,使学生理解并掌握平行四边形面积计算公式,并能运用公式计算相关图形的面积,并解决一些实际问题。

  数学思考:在学生自主探索,动手实践的过程中,培养学生的想象能力及创新意识,不断发展学生的空间观念。

  解决问题:在探索平行四边形面积公式的过程中,能探索出解决问题有效方法,并对所得出的平行四边形的公式做出合理的解释。

  情感与态度:通过教学活动,激发学生学习兴趣,培养互相合作、交流、评价的意识,感受数学与生活的密切联系。

  教学重点:面积的计算。 教学难点:公式推导。

  教具: 学具:

  教学流程:

  一、课前复习、回顾旧识

  师:长方形的面积公式是什么?(勾起学生对已有知识的回顾,为学习平行四边形面积公式做铺垫)

  生:长×宽=面积

  二、提出问题、引入新课

  1、师:(用小黑板出示一个平行四边形)光明小学有一块平行四边形的空地,为了美化环境,准备在上面铺上草坪,已知这块空地底是4m,高是3m,请问需要多少草坪呢?你有什么方法?

  2、板书课题:平行四边形的面积。

  三、探索发现、推导公式

  1、学生利用手中的平行四边形的小纸片进行同桌合作,尝试探索。

  2、展示学生的作品,讲讲解决的方法。

  生:我认为可以在放在格子里数数。

  生:转变成长方形在计算。

  ……………

  3、教师引导让学生把平行四边的面积转化为长方形的面积(渗透转化思想)

  4、师:你认为长方形的面积与平行四边形的面积两者有什么关系?用你自己的话说说。

  5、根据转化图(书本p23),集体讨论平行四边形的面积公式。

  6、出示平行四边形的面积公式:平行四边形面积=底×高

  师:你能理解吗?假如用字母s表示平行四边形面积,a表示底,h表示高,你会表示公式吗?

  生:s=a×h

  四、尝试练习、巩固新知

  1、请你尝试计算一下这块空地的面积

  2、试一试:口算得出下面平行四边形的面积 (学生面积公式的熟练运用)

  3、练一练p24(在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解)

  五、回顾总结、加深印象

  1、这节课我们共同研究了什么?(板书课题:平行四边形的面积计算)

  2、你有什么收获?

  3、今天,我们用转化割补法学习了平行四边形面积计算,希望同学们把它运用到今后的学习生活中去,真正做到学习致用。

四边形 篇15

  教学目标:

  1、观感知四边形,能区分和辨认四边形,了解四边形的特征。

  2、通过找一找、涂一涂、剪一剪等活动,培养学生观察比较和概括抽象的能力。

  3、通过情境图和生活中的事物进入课堂,感受生活中的四边形无处不在,让学生感受数学的奥秘。

  教学重点:认识四边形的特点。

  教学难点:把四边形进行分类。

  分层目标 上限:正确认识四边形,并能分析比较给一般四边形进行简单分类

  下限:能认识图中与生活中的四边形,并能创造一个四边形。

  课前准备:找一找、认一认生活中的四边形

  教具:一块钉板、毛线

  [后悔不已,什么工具都没让学生带。2块钉板在储藏室好好翻了一阵,厚厚的灰尘,我擦拭了许久,让学生准备太麻烦。得好好思考用什么活动可以巩固学生对四边形的认识]

  教学流程:

  1、通过找一找、认一认“四边形”,你有什么收获?

  课前思考:学生对平面图形与立体图形的认识不太清晰,而且在举例的时候不能把句子讲好:如课桌是四边形。教师需要引导学生完整清晰地表述,对“四边形”这个平面图形有一个比较准确的认识。

  课堂实施:举例中出现的物体表面都是正方形和长方形。课堂中,生1:我有不同意见。黑板的表面是长方形,不是四边形。看来部分学生对四边形的认识还是存在困惑的。师:呵呵,四边形是一个非常庞大的家族,其中就有叫正方形和长方形的一份子。

  2、同学们在生活中找了这么多表面是四边形的物体,现在能把心中的四边形画下来吗?建议借助桌上的工具或直尺

  课前思考:一部分学生可能直接手绘,必须培养学生用直尺画“四边形”的习惯,加强建立四边形边是“直”的特点。学具准备的不充分,平时我都会建议学生用身边的尺子来画直线--如数学课本。

  课堂实施:可喜多数学生在教师的引导下都用用直尺来画。哈哈,个别学生的忽视,早就成了我眼中的“猎物”了,可叹的是学生的四边形画得大同小异。为我寻找作品增加了难度。

  3、展示 “四边形”--反馈交流

  你认同他的“四边形”吗?

  从学生作品中收集几个“代表”的四边形进行判断。

  全班交流反馈

  课前思考:大部分学生可能会出现长方形或正方形,我该如何引导学生去创造更多赋予变化的“四边形”?

  课堂实施:因为提出了要求,学生画长方形和正方形的是减少了,但是几乎都是水平的,无疑又进入另一个胡同。我寻找的“四边形”有手绘的,不封闭的,其他都是中归中矩的四边形了。

  放大了手绘的作品,让学生观察,学生很容易就判断出线不直,排除!不封闭的也放大了,也逃不过学生的双眼,引导出四边形必须要围上,是一个封闭的平面图形。

  4、初步认识四边形的特点

  现在请你结合刚才说的和画的,你认为什么样的图形才是四边形?

  板书四边形的特点: 四条直边、四个角

  [课前思考:什么是边?难道有不直的边吗?不过为了强调可以把直的在“边”的边写上“直的”以示提醒。]

  课堂实施:在排除和判断后,四边形的基本特点学生还是容易掌握的。同时还指出四个顶点等。一个学生指出要四个直角,马上被否定了。让学生说出四个直角的四边形和哪些?

  5、围一围

  用老师准备的各色毛线,在钉板上围一围。

  先闭上眼睛想一想,你要围出什么样的四边形?

  课前思考:学具的限制,课堂上不能让每个学生围一围。但是通过准备各种颜色的毛线,鼓励部分学生在钉板上围出各异的四边形并展示,突破一般学生的思维局限。

  课堂实施:学生很喜欢动手,但是课堂时间有限,只能让个别学生展示。

  6、巩固判断(例1)

  把你认识的四边形涂上颜色。(并标上序号)

  课前思考:在这里学生最容易判断错误的还是正方体。我想谈话环节引导有效的话,这里可以降低错误率的。对不是四边形的,要求学生说出排除理由!

  课堂实施:学生完成的情况比预想得要理想,并判错的情况,但还有个别学生固执地认为正方形和长方形这个老朋友不是四边形。

  7、分类

  请你仔细观察,可以把这些四边形按照什么标准来分一分?建议用课本上的图形可以用尺子和三角板量一量,同桌合作并记录。

  课前思考:这是本课学习的难点,学生很难通过量一量,从边或者从角的标准去分类。如何引导学生去发现,我对教学还是缺少信心和把握。

  课堂实施:(2)班课堂上没有围一围环节,本课就如期进入分类环节。分类果然是难点,大部分学生都是不知所措,同桌合作也是无法进行了。

  分析原因:1、分类的知识不扎实,落下的后遗症

  2、学生容易看到图形外部特点如大小、颜色、长短,很难从图形的内部去寻找异同点所以表现出了举手无措,一个学生说我把最长的边超过2厘米的分一类,比2厘米小的分一类,使我无语。

  (1)尝试:让学生分别去量一量四边形的四条边,提问:通过量一量,你发现什么?引出对边。在让学生量一量角,提问:根据角的特点,可以怎么分?

  8、课堂小结

  说一说,你有什么收获?

  课前同学们就说了你认识的四边形,四边形在我们的生活中随处可见。瞧在校园里也藏着许多“四边形”你能把它们找出来吗?

  在“校园情境图”上用彩色笔涂出四边形!

  我的思考:半数以上的学生对一般四边形的基本特征的认识课前已经有所了解,但是认识却是不完整的。比如有学生认为四边形的四个角都要是直角,有学生会认为正方形和长方形不是四边形,还有学生会说边是斜线的(往里斜)的不是四边形等等。这里老师是否必须告知,哪些是四边形哪些不是四边形。那么是要先讲解什么样的图形是“四边形”后再归纳四边形的特点吗?困惑:在这里四边形的定义与特点是不同的吗?我会说:像这样有四条边和四个角的称为平面图形我们称为四边形。

  在本节课我要做的还有让对学生的已有相关认知引导整合,培养学生的概括比较能力,同时打破部分学生认识的局限性,力求让所有的学生能准确辨认四边形。同时对一般四边形能初步学会用科学的方法测量去比较发现,并分类。

四边形 篇16

  教学目标

  1.使学生在理解的基础上掌握公式,并会运用公式正确地计算平行四边形的面积.

  2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

  3.对学生进行辩诈唯物主义观点的启蒙教育.

  教学重点

  理解公式并正确计算平行四边形的面积.

  教学难点

  理解平行四边形面积公式的推导过程.

  教学过程

  复习引入

  (一)拿出事先准备好的长方形和平行四边形.量出它的长和宽(平行四边形量出底和高).

  (二)观察老师出示的几个平行四边形,指出它的底和高.

  (三)教师出示一个长方形和一个平行四边形.

  教学目标

  1.使学生在理解的基础上掌握公式,并会运用公式正确地计算平行四边形的面积.

  2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

  3.对学生进行辩诈唯物主义观点的启蒙教育.

  教学重点

  理解公式并正确计算平行四边形的面积.

  教学难点

  理解平行四边形面积公式的推导过程.

  教学过程

  复习引入

  (一)拿出事先准备好的长方形和平行四边形.量出它的长和宽(平行四边形量出底和高).

  (二)观察老师出示的几个平行四边形,指出它的底和高.

  (三)教师出示一个长方形和一个平行四边形.

  1.猜测:哪一个图形面积比较大?大多少平方厘米呢?

  2.要想我们准确的答案,就要用到今天所学的知识――

  板书课题:

  二、指导探究

  (一)数方格方法

  1.小组合作讨论:

  (1)图上标的厘米表示什么?每个小方格表示1平方厘米为什么? 

  (2)长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米? 

  (3)用数方格的方法,求出平行四边形的面积?(不满一格的,都按半格计算)

  (4)比较平行四边形的底和长方形的长,再比较平行四边形的高和长方形的宽,你发现了什么?

  2.集体订正

  3.请同学评价一下用数方格的方法求平行四边形的面积.

  学生:麻烦,有局限性.

  (二)探索公式.

  1.教师谈话

  不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看.

  2.学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的.

  3.学生到前面演示转化的方法.

  4.演示课件:平行四边形的面积

  5.组织学生讨论:

  (1)平行四边形和转化后的长方形有什么关系?

  (2)怎样计算平行四边形的面积?为什么?

  (3)如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的字母公式是什么?

  (三)应用

  例1.一块平行四边形钢板,它的面积是多少?(得数保留整数)

  4.8×3.5≈17(平方米)

  答:它的面积约是17平方米.

  三、质疑小结

  今天你学到了哪些知识?怎样计算平行四边形面积?

  四、巩固练习

  (一)列式并计算面积

  1.底=8厘米,高=5厘米,

  2.底=10米,高=4米,

  3.底=20分米,高=7分米

  (二)说出下面每个平行四边形的底和高,计算它们的面积.

  (三)应用题

  有一块地近似平行四边形,底是43米,商是20.1米,这块地的面积约是多少平方米?(得数保留整数)

  (四)量出你手里平行四边形学具的底和高,并计算出它的面积.

  五、板书设计

  教案点评:

  该教学设计在学习面积的计算过程中,引导学生进行大胆猜想,提出假设,放手让学生去实践,把学生推到了课堂教学活动的主体地位,用科学的方法去验证假设,使学生学到了解决问题的方法,同时培养了学生的逻辑思维和动手操作的能力。

  探究活动

  找规律

  活动目的

  1.使学生理解并掌握平行四边形的面积计算公式.

  2.能熟练计算平行四边形的面积.

  活动过程 

  1.用硬纸条(2个相等的长,2个相等的宽)和铁钉,钉一个长方形,测量出它的长和

  宽,计算出它的周长和面积.

  2.把长方形拉成平行四边形,并量出它的底和高,计算出它的周长的面积.

  3.连拉三次,分别计算周长和面积.

  4.把量出的、计算出的数据填入下表,并总结出发现的规律.(量出的数据以厘米做单位,保留一位小数)       

  规律:___________________________________.

221381
领取福利

微信扫码领取福利

四边形(精选16篇)

微信扫码分享