欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 一元一次方程(通用13篇)

一元一次方程(通用13篇)

网友 分享 时间: 加入收藏 我要投稿 点赞

一元一次方程(通用13篇)

一元一次方程 篇1

  复习目标:

  (1)了解方程、以及方程的解等基本概念。

  (2)会解。

  (3)会根据具体问题中的数量关系列出并求解。

  重点、难点:

  1. 重点:

  及方程的解的基本概念。

  的解法。

  会用解决实际问题。

  2. 难点:

  的解法的灵活应用。

  寻找实际问题中的等量关系。

  【典型例题】

  例1.

  分析:明确的概念。方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。

  在这里特别注意:未知数的次数及系数。

  这三个方程中含有两个未知数x、y,要想成为就要使其中一个未知数的系数为0。

  解:

  例2.

  分析:此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。(2)方程的解,即使方程左右两边相等的未知数的值。

  此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。

  解:

  将m=1代入关于x的方程,得:

  例3.

  解:

  注意:解的一般步骤为以上五步,但在解方程时,要注意灵活运用。

  例4.

  分析:此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。

  解:

  例5.

  分析:此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。

  解:

  注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。

  解:

  例6. 已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。

  分析:列方程解应用题的关键要找出题目中的等量关系,而由题意可知,此题有两个不变的量,即车的速度和车身的长度。在题目中不变的量,即可为等量,从而列出方程。例如以车身长度为等量,可列方程,设车的速度为x m/s,60x-1000=1000-40x,以车的速度为等量,可列方程,设车身长为x m

  解一:设车的速度为x m/s

  经检验,符合题意。

  答:车的速度为20m/s。

  解二:设车身的长度为x m

  经检验,符合题意。

  答:车的速度为(1000+200)/60=20m/s

  例7. 某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票

  售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份售完全部余票,那么零售票应按每张多少元出售才能使两个月的票款收入持平?

  分析:此题的等量关系比较好找,即五六月份的票款相等,但团体票及零售票的张数不知道,可用字母表示出来,设而不求。

  解:设团体票共2a张,零售票共a张,零售票价x元

  经检验,符合题意。

  答:零售票价为19.2元。

  【模拟试题】

  一. 填空题。

  1. 已知方程 的解比关于x的方程 的解大2,则 _________。

  2. 关于x的方程 的解为整数,则 __________。

  3. 若 是关于x的,则k=_________,x=_________。

  4. 若代数式 与 的值互为相反数,则m=_________。

  5. 的解为x=0,那么a、b应满足的条件是__________。

  二. 解方程。

  1.

  2.

  3.

  4.

  三. 列方程解应用题。

  1. 一商贩以每个鸡蛋0.24元购进一批鸡蛋,但在途中不慎碰坏12个,剩下的鸡蛋以每个0.28元售出,结果获利11.2元,问该商贩当初买进多少个鸡蛋?

  2. 分别戴着红色和黄色旅行帽的若干同学坐一只船,在公园内划船,突然间,一个戴红帽子的同学说:“我看到的我们船上的红帽子和黄帽子一样多。”这时一个戴黄帽子的同学说:“不对,你错了,我看到的红帽子是黄帽子的2倍。”问:戴红帽子和黄帽子的同学各有多少人?

  【试题答案】

  一. 填空题。

  1.                     2.

  3. 1,1                     4.                   5.

  二. 解方程。

  1.                      2.

  3.                    4.

  三. 列方程解应用题。

  1. 买364个鸡蛋

  2. 戴红帽子4人,黄帽子3人

一元一次方程 篇2

  2.4再探实际问题与一元一次方程

  -----销售中的盈亏(第一课时)

  教学任务分析

  

  

  

  

  知识技能

  使学生根据商品销售问题中的数量关系找出等量关系,列出方程,掌握商品盈亏的求法。

  教学

  思考

  1.会将实际问题转化为数学问题,通过列方程解决问题。

  2.体会数学的应用价值。

  解决

  问题

  会设未知数,并能利用问题中的相等关系列方程,通过分析解决销售中的.盈亏问题,进一步了解用方程解决实际问题的基本过程。

  情感

  态度

  通过学习更加关注生活,增强用数学的意识,从而激发学习数学的热情。

  

  

  让学生知道商品销售中的盈亏的算法。

  难点

  弄清商品销售中的“进价”“售价”及“利润””利润率”的含义和它们之间的等量关系。

  . 课前准备

  教具

  学具

  补充材料

  课件

  铺垫练习     课堂练习  拓广延伸练习

  三.教学过程设想

  教  师  活  动

  学生活动

  设计意图

  一.创设情境,引入新课

  前面我们结合实际问题讨论了如何分析数量

  关系,利用相等关系列方程以及如何解方程,

  可以看出方程是分析和解决问题的一种很有用

  的数学工具,本节课我们就来探究如何用一元

  一次方程解决实际问题。

  学生回忆、猜想

  激起学生主动回

  忆、联想和学习欲

  望。

  二.师生互动,课堂探究

  (出示课件)

  教师先介绍图片,再提问

  问题一:某商店在某时间以每件60元的价格

  卖出两件衣服,其中一件盈利25%,另一件亏

  损25%,卖出这两件衣服总的是盈利还是亏损,

  或是不盈不亏?请同学们估算卖这两件衣服的盈亏情况。

  学生观察、合

  作交流、讨论、

  发表看法

  培养学生学会合

  作交流,善于听取

  他人见解和敢于发

  言,让学生大体估

  算身边的实际问题

  ,可激发学习兴趣

  和探究的主动性。

  问题二:渐进给出,教师因情引导,并板书

  利润=进价×利润率

  如果一件商品的进价是40元,

  (1)    如果卖出后盈利25%,那么该商品的

  利润怎样算?

  (2)    如果卖出后亏损25%,那么该商品的

  利润怎样算?

  (3)那么利润、进价、利润率有什么关系?

  学生合作交流

  讨论、归纳、发

  表意见

  让学生结合生活

  经验,由身边熟悉

  实际的问题构建数

  学模型,培养学生

  会用数学方法解决

  实际问题,和由特

  殊到一般,概括能

  力、学生感到好学

  ,进而乐学,从感

  性上自然地熟悉销

  售中的等量关系,

  并逐步突破重难点

  ,为以后问题打下

  基础。

  问题三:渐近给出,教师因情引导,并板书

  利润=售价-进价

  或  利润+进价=售价

  (1)小卖部老板的面包进价为0.80元/个,

  卖给同学们1元/个,老板获取利润怎样算?

  (2)因而利润、售价、进价的关系又如何呢?

  问题四:教师逐步给出,并引导学生根据问题

  二、三中的等量关系来回答,解答,最后给出解

  题步骤,并板书。

  思考:盈利25%、亏损25%的意义?

  引导学生得出:盈利25%,即这件商品的销售利润值(售价―进价)是商品进价的25%,亏损25%,即这件商品的销售亏损值(进价―售价)是商品进价的25%。

  问题①:你能从大体上估算卖这两件衣服的盈亏情况吗?

  问题②:如何说明你的估算是正确的呢?

  问题③:如何判断是盈还是亏?

  问题④:两件衣服的进价、售价分别是多少?如何设未知数?相等关系是什么?

  问题⑤:商品销售中的进价、 售价、 利润、利润率有何关系?

  巡视学生完成情况,给予辅导,最后给出解题

  步骤。

  三.归纳总结。

  学生合作、交

  流、讨论、思考

  、补充解答过程

  让学生学会回顾

  已有知识,学会分

  析解决实际问题,

  养成好动脑、动手

  、合作学习的习惯

  ,体验成功感,以

  突破重难点,达到

  教学目标。

  四.知识拓展,教师给出问题

  (1)    汕头琴行同时出售两台不同钢琴,每台售价为960元,其中一台盈利20%,另一台亏损20%。这次琴行是赢利还是亏损,或是不盈不亏?

  (2)某商店对购买大件商品实行分期付款,明明的爸爸买了一台9000元的电脑,第一个月付款30,以后每月付款450元,问明明的爸爸需几个月付清余下的款?

  学生独立思考

  并完成、展示

  及时巩固所学知

  识

  五.回顾与小结

  1.能理解商品销售中的基本概念及相等关系

  ,熟练地应用  “利润=售价-进价、

  利润=进价×利润率”

  来寻找商品中的相等关系

  2.能联系以前研究过的问题,加深理解用一

  元一次方程解决实际问题的一般步骤。

  六.拓展延伸题。(略)

  学生看黑板、

  屏幕、教材、记

  录

  回顾所学知识,

  学会梳理、概括、

  总结。

  七.作业布置

  教材第97页 第3、题

  学生记录 

  对已学知识强化

  巩固

一元一次方程 篇3

  教学目标:1.使学生进一步掌握解一元一次方程的移项规律。2.掌握带有括号的一元一次方程的解法;3.培养学生观察、分析、转化的能力,同时提高他们的运算能力.教学重点:带有括号的一元一次方程的解法.教学难点:解一元一次方程的移项规律.教学手段:引导――活动――讨论教学方法:启发式教学教学过程(一)、情境创设:知识复习(二)引导探究:带括号的方程的解法。例1.2(x-2)-3(4x-1)=9(1-x).解:(怎样才能将所给方程转化为例1所示方程的形式呢?请学生回答)去括号,得:                                      移项,得:                                                      合并同类项,得:                                                系数化1,得:                                                  遇有带括号的一元一次方程的解法步骤:                               (三)练习:                  (a)组1.下列方程的解法对不对?若不对怎样改正?解方程2(x+3)-5(1-x)=3(x-1)解:2x+3-5-5x=3x-1,2x-5x-3x=3+5-3,-6x=-1,2.解方程:   (1)10y+7=12-5-3y;                  (2)2.4x-9.8=1.4x-9.3.解方程:(1)3(y+4)12;                            (2)2-(1-z)=-2;(b)组(1)2(3y-4)+7(4-y)=4y;                 (2)4x-3(20-x)=6x-7(9-x);(3)3(2y+1)=2(1+y)+3(y+3)               (4) 8x+4=2(4x+3)-2(-3+x)(四)教学小结本节课都教学哪些内容?哪些思想方法?应注意什么?

一元一次方程 篇4

  一、教学目标 :

  1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

  2、通过观察,归纳的概念

  3、积累活动经验。

  二、重点和难点

  重点:归纳的概念

  难点:感受方程作为刻画现实世界有效模型的意义

  三、教学过程 

  1、课前训练一

  (1)如果 | | =9,则  =           ;如果 2 =9,则  =            

  (2)在数轴上距离原点4个单位长度的数为                    

  (3)下列关于相反数的说法不正确的是(     )

  A、两个相反数只有符号不同,并且它们到原点的距离相等。

  B、互为相反数的两个数的绝对值相等

  C、0的相反数是0 

  D、互为相反数的两个数的和为0(字母表示为 、 互为相反数则 )

  E、有理数的相反数一定比0小

  (4)乘积为1的两个数互为 倒数  ,如:

  (5)如果 ,则(      )

  A、 , 互为倒数   B、 , 互为相反数    C、 , 都是0    D、 , 至少有一个为0

  (6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过 周后树苗长高到1米,依题意得方程(     )

  A、    B、    C、   D、 00

  2、由课本P149卡通图画引入新课

  3、分组讨论P149两个练习

  4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为 米,那么长为( +25)米,依题意可列得方程为:(      )

  A、 +25=310   B、 +( +25)=310   C、2 [ +( +25)]=310   D、[ +( +25)] 2=310

  课本的宽为3厘米,长比宽多4厘米,则课本的面积为             平方厘米。

  5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0.8元。已知每个笔记本比练习本贵1.2元,求每个练习本多少元?

  解:设每个练习本要 元,则每个笔记本要         元,依题意可列得方程:

  6、归纳方程、的概念

  7、随堂练习PO151

  8、达标测试

  (1)下列式子中,属于方程的是(     )

  A、    B、     C、   D、

  (2)下列方程中,属于的是(       )

  A、     B、     C、    D、

  (3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?

  解:设甲队胜了 场,则平了          场,依题意可列得方程:                   

  解得 =                

  答:甲队胜了        场,平了        场。

  (4)根据条件“一个数 比它的一半大2”可列得方程为                      

  (5)根据条件“某数 的 与2的差等于最大的一位数”可列得方程为              

  四、课外作业  P151习题5.1 

一元一次方程 篇5

  在过去的几年中,开展素质教育已取得了一定的成绩,众多教育工作者对教学方法、教学结构、教学评价等问题作出了深刻的反思和改革。尤其是99年6月份召开的第三次全国教育工作会议,中共中央、国务院颁发了《关于深化教育改革,全面推进素质教育的决定》,进一步明确了教育改革的实质,并赋予了素质教育时代的特征和新的内涵。素质教育的核心是创新教育和学生实践能力的培养。

  新的九年义务教育全日制初级中学《数学教学大纲》明确指出,“能够解决实际问题”是指:能够解决有实际意义的和相关学科中的数学问题,以及解决生产和日常生活中的实际问题;能够使用数学语言表达问题、展示交流,形成用数学的意识。

  又增设“初中数学中要培养的创新意识”主要在是指:对自然界和社会中的现象具有好奇心,不断追求新知、独立思考,会从数学的角度发现问题和提出问题,并用数学方法加以探索、研究和解决。

  要在学校教育过程中,贯彻这一精神。课堂教育就必须有创新的情景和学生主动参与学习的积极诱因。也就是说,课堂教育必须创设一个符合学生身心发展特点的、适合教育规律的和生动活泼,让学生积极主动发展的情境。

  因此,近期我们不断探索新形势下的课堂教学,下面就让我通过“一元一次方程的应用——追及问题”的教学设计,展示我们对问题的思考和实践,向在座的领导、专家请教,并衷心的希望你们给我提出宝贵的意见,改进我们的教学,进一步提高教学效益。

  我们这堂课主要有五个特色:

  1、学而时习之。

  2、新课当旧课上。

  3、重视引导学生再创造,再发现。

  4、突出学习和强度,角度和反思。

  5、创设情景,让学生主动积极参与。

  一、学而时习之。

  “学而时习之”就是说,通过反复地、多次地进行对知识的复习、巩固,提高学习能力,使知识学习呈螺旋式结构。这是符合人的认知规律的。这里我们具体设置了三种类型的题目。

  (1)、对知识进行系统的复习。例如课前训练一中的1-6题与13-15题,作业部分的1-5题,通过对以往学习的知识进行系统复习,使基本技能再形成。

  (2)、过去学生经常出错,疑难的重要知识点进行析疑、再次理解。例如:课前训练一,第7-10题和作业第6-10题,我们有意设计一些隐藏错误或缺漏的题目让学生养成质疑的习惯和能力,对自己学习严格要求,并时常进行反思,这也是创造性思维的发展的基础。

  (3)、练题例如课前训练11-12题,作业11-15题,都是以大题小做的形式出现,让学生了解哪一些是关键之处,通过局部训练提高学生学习的强度。

  有些老师认为训练题的题量不少,学生在课堂上完成吗?但我们在求学生定时不定量目的是为不同层次学生提供了更多的空间。在教学实践,不少教师都埋怨学习学生的知识遗忘率大,学习的内容有章节性和阶段性,针对这些问题,我们采用学而时习之的思想。但不是说要在3分钟过后,我们不论学生完成实践了多少都让学生必须进入课堂训练二的部分。

  二、新课当旧课上。

  这里具体体现在课前训练二上,这里遵循了从人的学习规律而设计的。古人云:“温故而知新。”因此,把新课当旧课上,让学生在教师创设的情境下,完成一组递[进的变式的训练课。让学生在不知不觉中学习了新课。另外,把现代数学手段引进课室,通过电脑的声、色、象等功能,把动态与静态的结合起来,使不能完整看到的现实问题,再次呈现眼前。

  第1题是相遇问题,通过电脑模拟情境,让学生进一步对相遇问题的本质有深刻的理解,并复习解应用题的一般思维习惯与解题步骤,强化学生的实践路和找相等关系的能力,为本节学习打下坚实的基础。

  问题1在第1题中改变条件,产生了不同于相遇问题的新情况,重点是让学生知道追是及有一定条件下的。

  问题2在问题1的基础上改变了条件。从不同角度、不同方向去同向追及问题作全面的正确的分析,通过电脑模拟,直观地反映两种情况的数量关系和本质。第一种,随着时间增加,距离越越大,也不能追及。第二种,随着时间的增加,距离越来越短,有可能追及。然后再与问题1结合在一起,通过对比向学生交待一个追及问题必须具备的三个条件:1、速度不同;2、快者追慢者;3、同方向。让学生观察模拟后,加以想象、分析,先画出线略图再完成局部训练题,弄清追及问题的数量关系。

  而问题3,实质是问题2中的追及问题,不同的只是甲、乙两人的距离,不是本身固有的,是通过先后出发而产生的。也就是说;“把两人相距40千米“用“让乙早出发12分钟“代替,其实,还是将问题3回复到问题2上。

  在这里我们对本节例题作适当的处理,把原例题放入a组练习中,使学生在不知不觉中解决了本几节的问题。打破了传统教学中例题一定在讲解的习惯。整个训练二,以一题多变化作为新课当旧课上的切入点,创设一个让人学得轻松,学得容易,学有所得的氛围。

  三、重视引导学生再创造、再发现。

  为了发挥分层教学的优势,我们设计了两种层/次的题目,定时不定量要求各层次的学生完成。从而使学生在一节课内,不同趣点,不同在求地在原有基础上得到巩固和发展,让学生有收获感、满足感,提高对学习的兴趣。

  a组训练题是本节知识的直接运用,面向全身学生,要求每个学生都掌握本节基本技能的方法。

  第1、2题用填直线型示意图和填表的形式让学生弄清已知与未知之间的关系,把实际问题建立抽象的,科学的数学模型。

  b组训练题较a组灵活,适用于学有余力的学生。

  (1)-(3)题是通过对a组题目进行变成训练形成的。因为是通过题型多样化,让学生从多角度去思考问题而后用局部与全过程相结合,多渠道拓展学生的视野。

  第(4)题,学生要考虑两种情况;目的是通过分类讨论的思想,培养学生思维的严密性。

  第(5)题,把常规的追及问题变为一个人,自身追及问题,这题比较注重思维训练,目的是培养学生“发现问题、提出问题”的能力,并注重联系实际,注重应用数学,保证了数学成为再创造、再发现的教学。从而使学生从定势思维过渡到发散性思维。从不同角度地让学生分析问题,充分体现了学习的强度,让学生始终处于一个主动参与的状态。

  同样这里也是限时20分钟,但并不是说,在20分钟学生必须全部完成,学生因应自己的情况,有选择的进行练习。

  以上不同起点的练习设置,不但照顾了差生,解放了优生,同时也调动了中层学生的积极性,达到抓两头,促中间的效果。

  四、突出学习的速度、角度、强度和反思

  在当今的社会,人必须有时间观念、竞争意识和社会责任感,而学习就必须有速度和强度。所以我们设置了限时训练和反馈卡。目的是为了让学生对自己的事负责,促使他们有一个时间观念。从而提高解题速度,并与其他的同学产生一种竞争意识,形成一个良好的学习环境和学习风气。

  俗语说:“授人以鱼,不如授之以渔。”所以教师在教学过程中,要让学生从“学会”到“会学”就必须在教学中体现学习的角度。也就是说,必须培养学生思考和解决问题要从多角度进行,强化联系,强化转换。所以我们在引入训练时运用变式,分类讨论的形式。目的是培养学生分析、思考的角度性。在练习的设计上,通过局部训练,填图或填表弄清题目的已知与未知的关系,培养学生审题的角度。而b组题主要是培养学生思维的角度,使优生有更多的空间去提高解题能力,学会多角度去思考问题。通过更高层次的要求,锻炼了优生思考问题的零活性。

  在教学过程中要体现学习的强度,就必须在课内利用一切的时间,对本课内容进行多次的、反复的训练,以达到熟练和应用自如的强度,具体表现在本节重点和难点的反复,大容量的局部训练和具有层次安排的题组训练上。

  例如:课前训练一和作业中对新旧知识的系统复习,通过多次巩固达到强化训练的目的。

  又如:练习中的局部训练。在一堂课,只有45分钟,时间是有限的,老师不能面面区到的为学生讲解全部知识,只能有针对性的集中解决本节的重点和难点,这就要求通过局部训练来强化学生的基本技能的形成。进一步体现在教学过程中“生为主体,师为主导”的指导思想。

  另外,我们设计了强化a组题,在学生完成a组训练题后,可以自由选择是进入强化a组题还是进入b组训练题中。这部分的设计主要是让学生养成客观的自我评价,和为在a组训练中未能形成基本技能的学生再次创造一个条件和空间,务求使学生掌握基础知识,再次有机会形成基本技能,充分体现学习强度和分层教学。

  “学问”的意义就是在学习过程中必然有问题存在,并且要主动的通过多种渠道解决问题,扫除成长中的障碍。

  作业中反思的设计,是培养学生对自己严格要求,通过对所学知识的回顾、反省,并不断好问、好思的解决问题,从而培养学生的质疑能力。

  五、创设情境,让学生主动积极参与

  学生学习最好的动力是对素材的兴趣。所以,我们在整个教学过程中为学生创设了情境,把数学问题溶入到一个与他们密切相关的生活问题中,使学生形成浓厚的学习兴趣和求知欲望。

  以上就是我们根据当前教育的新要求,进行的具体的改革和实践。谨请各位领导、专家指导。

一元一次方程 篇6

  再探实际问题和一元一次方程      

  教学任务的分析

  

  

  

  

  知识

  技能

  1、能根据具体问题的实际意义,检验根的合理性。

  2、会利用试误的方法比较两个代数式的大小关系。

  数学

  思考

  能结合实际问题背景发现和提出数学问题。

  解决

  问题

  学会列一元一次方程解决实际问题。

  情感

  态度

  1、能根据实际问题中的等量关系列出方程,体会方程是刻画现实世界的一个有效的数学模型。

  2、学会与人交流,通过实际问题情景的体验,让学生增强学习数学的兴趣。

  

  

  利用一元一次方程解决实际问题。

  

  

  在实际问题背景下,如何选择恰当未知数解决实际问题。

  教学流程安排

  活动流程图

  活动内容和目的

  活动一  利用一元一次方程解决购票问题。

  活动二  利用一元一次方程解决购灯问题。

  小结

  布置作业

  活动1:由学生感兴趣的例子引入新课,可以吸引学生更积极的投入课堂!同时利用从感受到猜测,再到验证的数学方法令学生学会利用数学建模的思想来解决问题

  活动2:在上一个问题解决的基础上,更进一步的利用一元一次方程来解决问题。

  小结:由学生去梳理整个一节课的内容和数学学习方法。教师明晰。

  布置作业:将本节课的知识延伸到课外

  课前准备

  教具

  学具

  补充材料

  1、电脑.

  4、多媒体演示文稿.

  1计算器

  解释电器的电功率问题。

  教学过程

  问题与情境

  师生活动

  设计意图

  活动1

  出示图片,引入课题。

  问题1:我们班级有47名学生,现在想要组织同学们去参观世界园艺博览会,世圆会采用如下方式售票:单人票价50元,如果达到50人(50人或50人以上),则优惠总票价的5%,那么请同学们思考,我们班级该怎样去买票呢?

  师:出示一组沈阳市世界园艺博览会的照片,并提出问题。

  生:思考、计算并回答。

  教师关注:学生是否对于该问题感兴趣,是否可以很积极的参与课堂?

  1、从学生身边熟悉的事物着手进行研究,进而引起学生的学习兴趣。

  2、引导学生利用小学学过的算术方法对问题进行研究,进而可以和后面将要研究的利用方程解决问题的行为形成对比。

  问题2:其他班的学生人数如果低于50人,该如何购票?

  师:提出问题。

  引导学生利用带入特殊值的方法解决问题。

  生:分组思考、讨论。

  引导学生学会当人数不确定时利用算术方法解决该问题。

  问题3:我们能用一元一次方程的知识来解决这个问题吗?

  师:提出问题。

  同时布置小组合作学习的任务和要求:

  (1)    要求活动中一人进行记录,至少三人或三人以上进行计算。

  (2)    要提醒学生注意自己组内每位同学的意见,学会倾听别人的意见。

  (3)     生:活动。

  教师关注:

  (1)    学生是否能够很积极的投入到活动中来,是否可以每个人拿出自己的意见。

  (2)    研讨时间。

  1、增强学生的合作意识。

  2、在活动中,注意培养学生的求异思维。

  3、提高学生在小组合作中的效率。

  4、活动中,即使是基础较差的学生,也会有自己的想法和做法,可以激励学生

  去思考和解决问题,进而使不同的学生在数学上得到不同的发展。

  (3)    学生是否能够很顺利的寻找到问题中所存在的等量关系。

  5、学生从小学的算术方法解决问题过渡到利用一元一次

  方程解决问题,体验了知识从特殊到一般的过程。

  6、培养学生利用方程的思想解决问题的习惯。

  问题5:你是怎样得出这个结论的?你能验证它吗?

  师:提出问题。

  生:思考并回答问题。

  教师关注:

  学生需要从大小两个方面进行验证,观察学生的思维方向是否全面。

  1、让学生体验数学知识从猜想到结论的出现,再到验证的全过程。

  2、培养学生的估算意识。

  3、让学生使用计算器,可以更好的使用现代的计算工具。

  4、发展学生分类讨论的能力。

  活动2  

  问题1:小明想在两种灯里选购一种,其中一种是11瓦,(即0.011千瓦)的节能灯,售价60元;另一种是60瓦(即0.06千瓦)的白灯,售价3元,两种灯的照明效果一样,使用寿命也相同(3000小时以上)。节能灯售价高,但是较省电;白灯售价低,但是用电多。如果电费是0.5元/(千瓦时),选哪种灯可以节省费用(灯的售价加电费)?

  师:提出问题。解决问题前应先解释一下什么是功率。

  生:学生独立思考并解决问题。

  教师关注:

  在刚才已经解决的问题得到的数学经验基础上,学生是否能够想到设处未知数解决问题。

  1、发展学生利用未知数来表示具体数量的能力。

  2、培养学生方程建模的思想。

  3、 进一步积累数学经验。

  问题2:如何说明你的猜想是正确的呢?

  教师:提出问题。

  生:思考并解决问题。

  进一步让学生明白一个结论的出现应该是建立在已经验证是正确的基础上的。

  问题3:假设两种灯的使用寿命为3000小时,现在如果计划照明3500小时,则需要购买两个灯,试设

  教师:提出问题。

  生:分组合作交流。

  教师关注:学生是否能够利用上题中感受――猜测――验证这种科

  1、进一步让学生学会分类讨论的方法。

  2、这个问题有很高的难度,可以最大限

  计你认为能省钱的选灯方

  案。

  学的认知方法来解决问题。

  度的对学生的认知发起挑战,能提高学生的学习兴趣,给基础较好的学生提供思维继续深入发展的机会,可以让不同的学生在数学上得到不同的发展。

  3、真正呈现出数学来源于生活,要反作用于生活。

  小结

  由学生谈体会,与学生分享自己所学的知识和感受,一起进行交流。

  教师明晰

  尽可能让学生梳理本节课的知识脉络和数学方法,还可以让学生在情感态度价值观方面谈出自己的体会,将该节课进行画龙点睛。

  布置作业

  1、习题2.4----6题、8题。

  2、通过网络查询来调查一下沈阳各个旅游景点的买票方式,为我们同学的出游设计最佳的购票方案。

  3、作一组调查,看看自己家所使用各类电灯价格和使用寿命,进而替妈妈设计家里最省钱的用灯方案。

  将本节课的知识延伸到课外,在应用方程建模思想解决问题的同时,提高学生应用数学的能力,让学生感觉到数学在人们生活中的作用,进而对数学产生更大的兴趣。

  教学设计说明

  本节课借助于两个具有实际背景的问题来培养学生列方程解应用问题的能力。

  整个学习过程的设置,充分以学生已有的生活经验和数学经验为前提,以培养学生利用方程解决实际问题为目标,以新课程标准为指导思想。在活动一中,重点引导学生由小学的算术方法解决问题转化到利用方程建模的思想解决问题。活动二则在活动一的基础上,引导学生利用刚刚掌握的方法直接列方程解决实际问题,进一步在问题的解决基础上,更深一步提出了最优化选择的问题,这个问题其实更适合应用不等式或线性方程来解决,安排在这里,是使学生除了建立一种利用数学建模的方法解决问题外,还可以为将来研究和学习不等式及线性方程打下基础。

  小结中,注重引导学生梳理出本节课的知识脉络,同时让学生感受利用方程建模思想解决问题的思维习惯。

  在布置课后作业中,分为两层,首先要求学生利用寻找等量关系列一元一次方程的方法解决实际问题,另外,通过两个课后调研的开放性问题,培养学生应用数学的能力,令学生感受到数学来源于生活,也要反作用于生活。

  本节课在教学方法上,从问题情境――自主探究――合作交流――归纳应用。可以更好的培养学生的独立解决问题和群体决策的能力。

  此作品为第五届全国初中青年数学教师优秀课观摩与评比活动说课教案

一元一次方程 篇7

  方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的。这节课上学生是带着上一节课的内容来学习的,现对这部分内容总结如下:

  本节课的整体过程是这样的:先利用等式的性质来解方程,从而引出了移项的概念,然后让学生利用移项的方法来解方程,当然今天是第一次接触这部分内容,所以在方程的选择上,都是移项后,同类项的合并比较简单,与前一节内容相比较,可轻易感受到这种解法的简洁性;讲解完成后,进一步给出了练一练的两个方程,让学生动手去做;仔细观察学生的练习过程,出现了很多困难。总结一下,大致有以下几种比较常见的情况:①含未知数的项不知道如何处理;②移项没有变号;③没移动的项也改变了符号;(划线的两种情况出现最多);针对以上情况,利用课堂时间,先让有困难的学生说一下自己在解题过程中出现的困难,让其他同学帮助他找出错误并加以解决,这样更能促进同学间的相互进步。(由于时间的关系,本节课这一点做得还不够完善,可从学生的作业中反应出来。)再让学生总结注意点,教师进行点拨。最后的学生小结并不是一种形式,通过小结教师能很好地看出学生的知识形成和掌握情况。 

  总的来说,虽然课堂上同学们总结错误点总结的不错,但学生对解方程的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了;第一,解题中部分同学仍采用原来的等式性质进行;第二,移项时符号还是一个大问题;所以总的说来,这课堂效率不高,没有完成基本的课堂任务;学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。

  另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。

一元一次方程 篇8

  教学目标:

  知识目标:通过复习,加深一元一次方程、方程的解等概念的了解,会根据具体问题中的数量关系列出方程并求解。

  能力目标:培养学生运用数学知识解决实际问题的能力。

  情感目标:让学生领悟数学在解决实际问题中的价值。

  教学重点:

  一元一次方程的解法和应用。

  教学过程:

  一、本章知识回顾:

  1.有关概念:

  (1)方程:含有未知数的等式叫做方程。

  注意:方程必须满足两个条件:①含有未知数;②是等式。(2)方程的解:使方程左右两边相等的未知数的值叫做方程的解。

  (3)一元一次方程:只含有一个未知数并且未知数的式子是整式,未知数的次数是1.注意:判断一个方程是否是一元一次方程,满足三个条件:①只含有一个未知数;②未知数的次数是1;③未知数的系数不为0.

  (4)方程的简单变形规则:

  ①方程两边都加上或减去同一个数或同一个整式,方程的解不变。

  ②方程两边都乘以或除以同一个不为0的数,方程的解不变。

  (5)移项:把等式一边的某一项改变符号后移到另一边,方程的解不变。

  2.解一元一次方程的步骤:

  ①去分母;②去括号;③移项;④合并同类项;⑤系数化为列一元一次方程解

  应用题的步骤:①审:弄清题意,分清已知量和未知量,明确个数量间的关系;②设:设出未知数;③列:根据题中的等量关系列出方程;④解:求出方程的解;⑤答:检验所求的解是否符合题意,并写出答案。

  二、运用知识,训练能力

  1.下列方程中,哪些是一元一次方程,哪些不是?并说明理由。

  (1)4+5x=11

  (2)x+2y=5

  (3)x2-5x+6=0

  (4)1?=3

  (5)x?1x2+3=1 2,已知方程2xm+1+3=5是一元一次方程,则m= --------- 3.解方程:x?33-x?12=某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船4小时,已知船在静水中的速度是每小时千米,水流的速度是每小时千米。若两地相距10千米,求两地的距离。

  解:设两地的距离为x千米,因C地位置没有确定,所以需对C地位置进行分类讨论:

  (1)当C地在两地之间时,由题意列方程得:------------------------------,解得--------------。

  (2)当C地在两地之外时,由题意列方程得:------------------------------,解得--------------。

  故两地的距离为--------------------。 5.小亮是一名七年级的学生,一次对方程

  2x?1x4-?m4= -1去分母时,由于粗心,方程右边的'-1没有乘4而得到错解x=3,你能由此判断出m的值吗?如果能,请求出此方程正确的解。

  三、合作探究,解决问题

  复习题4、5、14、17

  通过生生、师生合作,共同完成。

  四、畅谈收获,分享成果

  通过本节课的复习,你又有哪些新的收获?

  五、布置作业

  复习题

一元一次方程 篇9

  教学目标1.在现实情景中深刻理解等式的性质,并能正确运用等式的性质.2.熟练掌握移项法则,利用移项法则解一元一次方程.教学重、难点重点:等式的基本性质,移项法则难点:对等式性质的理解和用移项的法则解方程.教学过程一 激情引趣,导入新课解方程 :2x-5=3x+6 你能说出你解这个方程每一步的依据吗?(一个加数等于和减去_______.)(导入新课:在小学我们学习了解方程,依据是加数与和的关系,因数与积的关系,还有没有别的依据呢?)二 合作交流,探究新知1 等式的性质 问题1  (一)班的学生人数等于(二)班的学生人数,现在每班增加2名学生,那么(一)班与(二)班的学生人数还相等吗?如果每班减少了3名学生,那么两个班的学生人数还相等吗?如果(-)班人数为a人,(二)班人数为b人,上面问题用含有a、b的式子怎样表示?问题2如果甲筐米的重量=乙筐米的重量,现在把甲、乙两筐的米分别倒出一半,那么甲,乙两筐剩下的米的重量相等吗?如果设甲筐米的重量为a,乙筐米的重量为b,上面问题用式子怎么表示?从上面两个问题,可以发现等式有什么性质?等式的性质1 等式两边都______(或者减去)_________(或同一个式子)所得结果仍是____.等式的性质2 等式两边都______(或者除以)_________(或同一个式子)(除数或者除式不能为0),所得结果仍是____.你能用式子表达等式的性质吗?2 尝试练习做一做(1)       说一说下面等式变形的根据①从x=y 得到 x+4=y+4,           ②  从a=b 得到 a+10=b+10  ③ 从2x=3x-6得到 2x-3x=3x-6-3x   ④  从3x=9得到x=3, ⑤从 得到x=8用等式的性质解方程:4x+4=3x+12 归纳:(1)什么叫移项?把方程的某一项改变____后从方程的一边移到另一边叫______看看下面的变形是移项吗?2x+5-3x+6=9,解 :2x-3x+5+6=9练一练 用移项的方法解方程1   2x=x+3                             2   3x-1=40+2x三 应用迁移,巩固提高1 实际应用例1  (我国古代数学问题)用绳子量井深,把绳子3折来量,井外余绳子4尺;把绳子4折来量,井外余绳子1尺,于是量井人说:“我知道这口井有多深了”。你能算出这口井的深度吗?(做完后交流讨论)2 游戏:请你任意圈出下面日历中竖列上三个相邻的数,求出它们的和并告诉我,我就知道你圈出的是哪三个数。四 课堂练习 ,巩固提高1 如果单项式 与 是同类项,则n=___,m=____2 如果代数式3x-5与1-2x的值互为相反数,那么x=____3 若方程3x-5=4x+1与3m-5=4(m+x)-2m的解相同,求 的值p 109 1,2 五 反思小结,拓展提高这一节你有什么收获?作业 p 118,1 、 2、3

一元一次方程 篇10

  一、学习目标

  1.知道解一元一次方程的去分母步骤,并能熟练地解一元一次方程。

  2.通过讨论、探索解一元一次方程的一般步骤和容易产生的问题,培养学生观察、归纳和概括能力。

  二、重点:

  解一元一次方程中去分母的方法;培养学生自己发现问题、解决问题的能力。

  难点:去分母法则的正确运用。

  三、学习过程:

  (一)、复习导入

  1、解方程:(1);(2)2(x-2)-(4x-1)=3(1-x)

  2、回顾:解一元一次方程的一般步骤及每一步的依据

  3、(只列不解)为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树_____棵。

  (二)学生自学p99--100

  根据等式性质,方程两边同乘以,得

  即得不含分母的方程:4x-3x=960

  X=960

  像这样在方程两边同时乘以,去掉分数的分母的变形过程叫做。依据是

  (三)例题:

  例1解方程:

  解:去分母,得依据

  去括号,得依据

  移项,得依据

  合并同类项,得依据

  系数化为1,得依据

  注意:

  1)、分数线具有

  2)、不含分母的项也要乘以(即不要漏乘)

  讨论:小明是个“小马虎”下面是他做的题目,我们看看对不对?如果不对,请帮他改正。

  (1)方程去分母,得

  (2)方程去分母,得

  (3)方程去分母,得

  (4)方程去分母,得

  通过这几节课的学习,你能归纳小结一下解一元一次方程的一般步骤吗?

  解一元一次方程的一般步骤是:

  1.依据;

  2.依据;

  3.依据;

  4.化成的形式;依据;

  5.两边同除以未知数的系数,得到方程的解;依据;

  四、小结:

  谈谈这节课有什么收获以及解带有分母的一元一次方程要注意的一些问题。

  五、课堂检测:

  1、去分母时,在方程的左右两边同时乘以各个分母的_____,从而去掉分母,去分母时,每一项都要乘,不要漏乘,特别是不含分母的项,注意含分母的项约去分母分子必须加括号,由于分数线具有

  2、解方程

  (1)2x+5=5x-7

  (2)4-3(2-x)=5x

  六、作业

  P102:3,10.

一元一次方程 篇11

  解一元一次方程

  【教学任务分析】教学目标知识技能

  1.用一元一次方程解决“数字型”问题;

  2.能熟练的通过合并,移项解一元一次方程;

  3.进一步学习、体会用一元一次方程解决实际问题.

  过程

  方法通过学生自主探究,师生共同研讨,体验将实际问题转化成数学问题,学会探索数列中的规律,建立等量关系并加以解决,同时进一步渗透化归思想.

  情感

  态度经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力,体会数学对实践的指导意义.

  重点建立一元一次方程解决实际问题的模型.

  难点探索并发现实际问题中的等量关系,并列出方程.

  【教学环节安排】

  环节教学问题设计教学活动设计

  情

  境

  引

  入牵线搭桥,解下列方程:

  (1)-5x+5=-6x;(2);

  (3)0.5x+0.7=1.9x;

  总结解“ax+b=cx+d”类型的一元一次方程的步骤方法.

  引出问题即课本例3

  问:你能利用所学知识解决有关数列的问题吗?教师:出示题目,提出要求.

  学生:独立完成,根据讲评核对、自我评价,了解掌握情况.

  探究一:数字问题

  例3有一列数,按一定规律排列成1,-3,9,-27,81,-243……其中某三个相邻数的和是-1701,这三个数各是多少?

  【分析】1.引导学生观察这列数有什么规律?

  ①数值变化规律?②符号变化规律?

  结论:后面一个数是前一个数的-3倍.

  2.怎样求出这三个数?

  ①设三个相邻数中的第一个数为x,那么其它两个数怎么表示?

  ②列出方程:根据三个数的和是-1701列出方程.

  ③解略

  变式:你能设其它的数列方程解出吗?试一试.比比较哪种设法简单.

  探究二:百分比问题(习题3.2第8题)

  【问题】某乡改种玉米为种优质杂粮后,今年农民人均收入比去年提高20%.今年人均收入比去年的1.5倍少1200元.这个乡去年农民人均收入是多少元?

  【分析】①若设这个乡去年农民人均收入是x元,今年人均收入比去年提高20%,那么今年的收入是_________元;

  ②因为今年的'人均收入比去年的1.5倍少1200元,所以今年的收入又可以表示为_________元.

  ③根据“表示同一个量的两个式子相等”可以列出方程为________________________.

  解答略教师:引导学生分析.

  2.本例是有关数列的数学问题,题要求出三个未知数,这需要学生观察发现它们的排列规律,问题具有一定的挑战性,能激发学生学习探索规律类型的问题.

  学生:观察、讨论、阐述自己的发现,并互相交流.

  根据分析列出方程并解出,求出所求三个数.

  备注:寻找数的排列规律是难点,可让学生小组内讨论发现、解决.

  变换设法,列出方程,比较优劣、阐述发现和体会.

  教师:出示题目,引导学生,让学生尝试分析,多鼓励.

  学生:根据引导思考、回答、阐述自己的观点和认识.

  根据共同的分析,列出方程并解出,

  (说明:此题目数以百分比、增长率问题可根据实际情况安排,若没时间,可在习题课上处理)

  尝试应用

  1、填空

  (1)有个三位数,个位上的数字是a,十位上的数字是b,百位上的数字是c,则这个三位数是:_______________.

  (2)有一数列,按一定规律排成1,-2,3,2,-4,6,3,-6,9,接下来的三个数为_____________________.

  (3)三个连续偶数,设第一个为2x,那么第二个为_______,第三个为______,它们的和是__________;若设中间的一个为x,那么第一个为_____,第三个为______,它们的和是__________.

  2.一个三位数,三个数位上的数字的和为17,百位上的数字比十位上的数字大7,个位上的数字是十位上数字的3倍,你能求出这个三位数吗?这是最经常出现的一类数字问题:引导学生分析已知各位上的数字,怎么表示这个数,理解为什么不能表示成cba?这是解决这类问题的基础.

  通过(3)题理解连续数的表示法,并感受怎么表示最简单.

  通过2题让学生理解怎么设?以及怎么设简单(舍都有联系的一个),并感受用未知数表示多个未知量,顺藤摸瓜,从而列出方程的顺向思维方式.

  教师:结合完成题目,汇总讲解,重点在于解法.

  成果

  展示1.通过本节所学你有哪些收获?

  2.谈谈你掌握的方法和学习的感受,以及你对应用方程解决问题的体会.学生自我阐述,教师评价鼓励、补充总结.

  补偿提高1.有一数列,按一定规律排成0,2,6,12,20,30,…,则第8个数为______,第n个数为_____.

  2.下面给出的是20xx年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,圈出的三个数的和不可能是( ).

  A.69B.54C.27D.40

  通过练习,掌握数字问题的分类及不同解法,巩固、体会用方程解决问题的思路和思维方式,学会用方程解决问题.

  题目设置是对前面学生所出现的问题进行针对性的补偿和补充,也可对学有余力的学生拓展提高.

  根据学生完成情况灵活设置问题.

  作业

  设计作业:

  必做题:课本4、5、第94页6题.

  选做题:同步探究.教师布置作业,并提出要求.

  学生课下独立完成,延续课堂.

  授课教师:

  20xx年10月31日

一元一次方程 篇12

  一、素质教育目标

  (一)知识教学

  1.要求学生学会用移项解方程的方法.

  2.使学生掌握移项变号的基本原则.

  (二)能力训练点

  由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力.

  (三)德育渗透点

  用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想.

  (四)美育渗透点

  用移项法解方程明显比用前面的方法解方程方便,体现了数学的方法美.

  二、学法引导

  1.教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛.

  2.学生学法:练习→移项法制→练习

  三、重点、难点、疑点及解决办法

  1.重点:移项法则的掌握.

  2.难点:移项法解一元一次方程的步骤.

  3.疑点:移项变号的掌握.

  四、课时安排

  3课时

  五、教具学具准备

  投影仪或电脑、自制胶片、复合胶片.

  六、师生互动活动设计

  教师出示探索性练习题,学生观察讨论得出移项法则,教师出示巩固性练习,学生以多种形式完成.

  七、教学步骤

  (一)创设情境,复习导入  

  师提出问题:上节课我们研究了方程、方程的解和解方程的有关知识,请同学们首先回顾上节课的有关内容;回答下面问题.

  (出示投影1)

  利用等式的性质解方程

  (1) ; (2) ;

  解:方程的两边都加7, 解:方程的两边都减去 ,

  得 , 得  ,

  即 . 合并同类项得  .

  【教法说明】通过上面两小题,对用等式性质解方程进行巩固、回忆,为讲解新方法奠定基础.

  提出问题:下面我们观察上面方程的变形过程,从中观察变化的项的规律是什么?

  (二)探索新知,讲授新课

  投影展示上面变形的过程,用制作复合式运动胶片将上面的变形展示如下,让学生观察在变形过程中,变化的项的变化规律,引出新知识.

  (出示投影2)

  师提出问题:1.上述演示中,两个题目中的哪些项改变了在原方程中的位置?怎样变的?

  2.改变的项有什么变化?

  学生活动:分学习小组讨论,各组把讨论的结果派代表上报教师,最好分四组,这样节省时间.

  师总结学生活动的结果:大家讨论的结论,有如下共同点:①方程(1)的已知项从左边移到了方程右边,方程(2)的 项从右边移到了左边;②这些位置变化的项都改变了原来的符号.

  【教法说明】在这里的投影变化中,教师要抓住时机,让学生发现变化的规律,准确掌握这种变化的法则,也是为以后解更复杂方程打下好的基础.

  师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.

  (三)尝试反馈,巩固练习

  师提出问题:我们可以回过头来,想一想刚解过的两个方程哪个变化过程可以叫做移项.

  学生活动:要求学生对课前解方程的变形能说出哪一过程是移项.

  【教法说明】可由学生对前面两个解方程问题用移项过程,重新写一遍,以理解解方程的步骤和格式.

  对比练习:(出示投影3)

  解方程:(1) ; (2) ;

  (3) ; (4) .

  学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解.

  师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、合并同类项、检验.)

  【教法说明】这部分教学旨在于使学生学会用移项这一手段解方程的方法,通过学生动手尝试,理解解方程的步骤,从而掌握移项这一法则.

  巩固练习:(出示投影4)

  通过移项解下列方程,并写出检验.

  (1) ; (2) ;

  (3) ; (4) .

  【教法说明】这组题训练学生解题过程的严密性,故采取学生亲自动手做,四个同学板演形式完成.

  (四)变式训练,培养能力

  (出示投影5)

  口答:

  1.下面的移项对不对?如果不对,错在哪里?应怎样改正?

  (1)从 ,得到 ;

  (2)从 ,得到 ;

  (3)从 ,得到 ;

  2.小明在解方程 时,是这样写的解题过程: ;

  (1)小明这样写对不对?为什么?

  (2)应该怎样写?

  【教法说明】通过以上两题进一步印证移项这种变形的规律,即“移项要变号”.要使学生认清这里的移项是把某项从方程的一边移到另一边而不是在同一边交换位置,弄懂解方程的书写格式是方程在变形,变形时保持“左右两边相等”这一数学模式.

  第 1 2 页  

一元一次方程 篇13

  《一元一次方程的应用》是数学教学中的一个重点,而对于学生来说它却又是学习的一个难点。在教学中应如何突出重点,特别是要突破学生学习的难点,这是我们数学教师不断研究和探讨的问题。

  一、成功之处:

  1、能创设一个有趣的问题情境,与学生日常生活有关的问题切入,七年级的学生好奇心比较强,可以用计算年龄的引入是学生积极参与到今天的学习中去。充分调动学生的积极性。

  2、能进行发散思维的培养,从例题的不同设法、列方程的解法中逐步培养学生从不同的角度去分析问题、解决问题的能力。

  3、恰当的使用了多媒体设备,设置一些卡通画面和声音的播放,带动学生使用眼、手、耳、及大脑等器官进行全方位的接受信息和发出信息。

  4、营造了一种非常宽松、愉悦的课堂气氛,让学生在高兴的情绪下积极和老师互动,和同学互动、讨论。

  二、不足之处:

  1、七年级的学生分析问题、寻找数量关系的能力较差,在一元一次方程的应用这几节课中,我始终把分析题意、寻找数量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。但学生在学习的过程中,却不能很好地掌握这一要领,会经常出现一些意想不到的错误。如,数量之间的相等关系找得不清;列方程忽视了解设的步骤等。

  2、本节课的教学中,我忽视了学生的活动和交流,新课程标准下的教学,是要让学生有更多的机会进行探究、发现。让学生自己分析,相互探讨,哪怕是错了再进行纠正,学生对知识的掌握也会更牢固。在以后的教学中我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我深刻体会到:课前备课除了要认真研究教材和设计好教学内容外,还要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探究,真正促进师生的共同发展。

  3、在本节课的教学中我以师生共同探究为主线进行了教学,课堂上大部分学生积极参与,表现出学习的欲望和热情,但还有一部分同学学习的积极性不高,可能是课堂对他缺乏吸引力,这是值得我深思的,通过本节课,我对怎样激发学生的学习兴趣,让学生的思维动起来有了更深刻的体会。在今后的教学中,我要努力给学生充分的思考交流的时间,鼓励学生提出有价值的问题,抓住他们思维的闪光点。

  4、教学内容量偏大,没有正确的分配时间,以致没有时间让学生进行自我归纳和总结。没有达到应有的学习效果,教学效果不佳。

  三、改进方法:

  作为教师,要想真正搞好以探究活动为主的课堂教学,必须掌握多种教学思想方法和教学技能,不断更新与改变教学观念和教学态度,在课堂教学中始终牢记:学生才是学习的主体,学生才是课堂的主体;教师只是课堂的组织者、引导者和合作者。因此,课堂教学过程的设计,也必须体现学生的主体性。在以后的教学中,我会继续发扬我的成功之处,逐步完善我的不足之处,我将尽自己最大的能力,上好每一堂课。

221381
领取福利

微信扫码领取福利

一元一次方程(通用13篇)

微信扫码分享