数学教案-定理与证明(精选2篇)
数学教案-定理与证明 篇1
教学建议
(一)教材分析
1、知识结构
2、重点、难点分析
重点:真命题的证明步骤与格式.命题的证明步骤与格式是本节的主要内容,是学习数学必具备的能力,在今后的学习中将会有大量的证明问题;另一方面它还体现了数学的逻辑性和严谨性.
难点:推论证明的思路和方法.因为它体现了学生的抽象思维能力,由于学生对逻辑的理解不深刻,往往找不出最优的思维切入点,证明的盲目性很大,因此对学生证明的思路和方法的训练是教学的难点.
(二) 教学建议
1、四个注意
(1)注意:①公理是通过长期实践反复验证过的,不需要再进行推理论证而都承认的真命题;②公理可以作为判定其他命题真假的根据.
(2)注意:定理都是真命题,但真命题不一定都是定理.一般选择一些最基本最常用的真命题作为定理,可以以它们为根据推证其他命题.这些被选作定理的真命题,在教科书中是用黑体字排印的.
(3)注意:在几何问题的研究上,必须经过证明,才能作出真实可靠的判断.如“两直线平行,同位角相等”这个命题,如果只采用测量的方法.只能测量有限个两平行直线的同位角是相等的.但采用推理方法证明两平行直线的同位角相等,那么就可以确信任意两平行直线的同位角相等.
(4)注意:证明中的每一步推理都要有根据,不能“想当然”.①论据必须是真命题,如:定义、公理、已经学过的定理和巳知条件;②论据的真实性不能依赖于论证的真实性;③论据应是论题的充足理由.
2、逐步渗透数学证明的思想:
(1)加强数学推理(证明)的语言训练使学生做到,能用准确的语言表述学过的概念和命题,即进行语言准确性训练;能学会一些基本的推理论证语言,如“因为……,所以……”句式,“如果……,那么……”句式等等;提高符号语言的识别和表达能力,例如,把要证明的命题结合图形,用已知,求证的形式写出来.
(2)提高学生的“图形”能力,包括利用大纲允许的工具画图(垂线、平行线)的能力和在对要证命题的理解(如分清题设、结论)的基础上,画出要证明的命题的图形的能力,后一点尤其重要,一般通过图形易于弄清命题并找出证明的方法.
(3)加强各种推理训练,一般应先使学生从“模仿”教科书的形式开始训练.首先是用自然语言叙述只有一步推理的过程,然后用简化的“三段论”方法表述出这一过程,再进行有两步推理的过程的模仿;最后,在学完“命题、定理、证明”一单元后,总结证明的一般步骤,并进行多至三、四步的推理.在以上训练中,每一步推理的后面都应要求填注推理根据,这既可训练良好的推理习惯,又有助于掌握学过的命题.
教学目标 :
1、了解证明的必要性,知道推理要有依据;熟悉综合法证明的格式,能说出证明的步骤.
2、能用符号语言写出一个命题的题设和结论.
3、通过对真命题的分析,加强推理能力的训练,培养学生逻辑思维能力.
教学重点:证明的步骤与格式.
教学难点 :将文字语言转化为几何符号语言.
教学过程 :
一、复习提问
1、命题“两直线平行,内错角相等”的题设和结论各是什么?
2、根据题设,应画出什么样的图形?(答:两条平行线a、b被第三条直线c所截)
3、结论的内容在图中如何表示?(答:在图中标出一对内错角,并用符号表示)
二、例题分析
例1、 证明:两直线平行,内错角相等.
已知:a∥b,c是截线.
求证:∠1=∠2.
分析:要证∠1=∠2,
只要证∠3=∠2即可,因为
∠3与∠1是对顶角,根据平行线的性质,
易得出∠3=∠2.
证明:∵a∥b(已知),
∴∠3=∠2(两直线平行,同位角相等).
∵∠1=∠3(对顶角相等),
∴∠1=∠2(等量代换).
例2、 证明:邻补角的平分线互相垂直.
已知:如图,∠AOB+∠BOC=180°,
OE平分∠AOB,OF平分∠BOC.
求证:OE⊥OF.
分析:要证明OE⊥OF,只要证明∠EOF=90°,即∠1+∠2=90°即可.
证明:∵OE平分∠AOB,
∴∠1= ∠AOB,同理 ∠2= ∠BOC,
∴∠1+∠2= (∠AOB+∠BOC)= ∠AOC=90° ,∴OE⊥OF(垂直定义).
三、课堂练习:
1、平行于同一条直线的两条直线平行.
2、两条平行线被第三条直线所截,同位角的平分线互相平行.
四、归纳小结
主要通过学生回忆本节课所学内容,从知识、技能、数学思想方法等方面加以归纳,有利于学生掌握、运用知识.然后见投影仪.
五、布置作业
课本P143 5、(2),7.
六、课后思考:
1、垂直于同一条直线的两条直线的位置关系怎样?
2、两条平行线被第三条直线所截,内错角的平分线位置关系怎样?
3、两条平行线被第三条直线所截,同旁内角的平分线位置关系怎样?
数学教案-定理与证明 篇2
一、教学目标
1.了解“证明”的必要性和推理过程中要步步有据.
2.了解综合法证明的格式和步骤.
3.通过一些简单命题的证明,初步训练学生的逻辑推理能力.
4.通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语句正确画出几何图形的能力.
5.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.
二、学法引导
1.教师教法:尝试指导,引导发现与讨论相结合.
2.学生学法:在教师的指导下,积极思维,主动发现.
三、重点·难点及解决办法
(-)重点
证明的步骤和格式是本节重点.
(二)难点
理解命题,分清其题设和结论,正确对照命题画出图形,写出已知、求证.
(三)解决办法
通过学生分组讨论,教师归纳得出证明的步骤和格式,再以练习加以巩固,解决重点、难点及疑点.
四、课时安排
l课时
五、教具学具准备
投影仪、三角板、自制胶片.
六、师生互动活动设计
1.通过引例创设情境,点题,引入新课.
2.通过情境教学,学生分组讨论,归纳总结及练习巩固等手段完成新授.
3.通过提问的形式完成小结.
七、教学步骤
(-)明确目标
使学生严密推理过程,掌握推理格式,提高推理能力。
(二)整体感知
以情境设计,引出课题,引导讨论,例题示范讲解新知,以练习巩固新知.
(三)教学过程
创设情境,引出课题
师:上节课我们学习了定理与证明,了解了这两个概念.并以证明“两直线平行,内错角相等”来说明什么是证明.我们再看这一命题的证明(投影出示).
例1 已知:如图1, , 是截线,求证: .
证明:∵ (已知),∴ (两直线平行,同位角相等).
∵ (对项角相等),∴ (等量代换).
这节课我们分析这一命题的证明过程,学习命题证明的步骤和格式.
[板书]2.9 定理与证明
探究新知
1.命题证明步骤
学生活动:由学生分组讨论以上命题的证明过程,按自己的理解说出证明一个命题都需要哪几步.
【教法说明】根据上一节“两直线平行,内错角相等”这一命题的证明过程让学生讨论、分析、归纳命题证明的一般步骤,一是可以加深对命题证明的理解,二是培养学生归纳总结能力。在总结步骤时,学生所说的层次不一定有逻辑性,或不太严密,教师要注意引导,使学生分清命题证明几个步骤的先后层次.
根据学生讨论,回答结果.教师归纳小结,师生共同得出证明命题的步骤(出示投影):
第一步,画出命题的图形.
先根据命题的题设即已知条件,画出图形,再把命题的结论即求证的内容在图上标出.还要根据证明的需要,在图上标出必要的字母或符号,以便于叙述或推理过程的表达.
第二步,结合图形写出已知、求证.
把命题的题设化为几何符号的语言写在已知中,命题的结论转化为几何符号的语言写在求证中.
第三步,经过分析,找出由已知推得求证的途径,写出推理的过程.
学生活动:结合“两直线平行,内错角相等”这一命题的证明,理解以上命题证明的一般步骤(给学生一定时间理解记忆).
【教法说明】在以上第二个步骤中,将文字语言转化为符号语言是教学中的难点,要注意在练习中加强辅导,第三步由学生独立完成有困难,要逐步培养训练,现阶段暂不要求学生独立完成.
反馈练习:(1)画出证明命题“两直线平行,同旁内角互补”时的图形,写出已知、求证.
(2)课本第112页A组第5题.
【教法说明】由学生依照例1“两直线平行,内错角相等”这一命题的证明画出图形,写出已知、求证,巩固命题证明的第一、二步.
2.命题的证明
例2 证明:邻补角的平分线互相垂直.
【教法说明】此例题完全放手让学生独立完成有一定困难,但教师也不能包办代替,最好通过让学生分步讨论,同桌互相磋商,分步完成的方法,使学生对命题证明的每一步都进一步理解,教师可以给学生指明思考步骤.
(1)分析命题的题设与结论,画出命题证明所需要的图形.
邻补角用图2表示:
图2
添画邻补角的平分线,见图3:
图3
(2)根据命题的题设与结论写出已知、求证.邻补角用几何符号语言提示: ,角平分线用几何符号语言表示: , ,求证邻补角平分钱互相垂直,用符号语言表示: .
(3)分析由已知谁出求证途径,写出证明过程.
有什么结论后可得 ( ),由已知可以推导 吗?学生讨论思考.
【教法说明】以上步骤的完成教师只提供思路,具体结论的得出与操作要由学生独立完成.找一个学生到黑板上板演,其他同学在练习本上写出完成整过程.
已知:如图, , , .
求证:
证明:∵ (已知),又∵ , (已知),∴ .
∴ (垂直定义).
证明完成后提醒学生注意以下几点:
①要证明的是一个简单叙述的命题,题设和结论不明显,可以先根据题意画出图形.如例2,结合图形分析命题的题设和结论.
②在写已知、求证的内容时,要将文字语言转化为符号语言来表示,转化时的写法也不是惟一的,要根据使用的方便来写,如: 与 互为邻补角,在已知中写为 ,角平分线有几种表示方法,如 是 的平分线, , ,根据此题写成 较好,方便于下面的推理计算.
③对命题的分析、画图,如何推理的思考过程,证明时不必写出来,不属于证明内容.
反馈练习:按证明命题的步骤证明:“两条直线被第三条直线所截,如果同位角相等,那么内错角相等.”
【教法说明】由学生独立完成,找学生板演,发现问题教师及时纠正.
3.判定一个命题是假命题的方法
师:以上我们的推理是说明一个命题是真命题的判定方法.那么如何判定一个命题是假命题呢?如“相等的角是对项角”,同学们都知道这是一个假命题,如何说明它是一个假命题呢?谁能试着说明一下?
【教法说明】教师先不告诉学生判定一个命题是假命题的方法,而是由很明显的“相等角是对顶角”这一假命题,让学生自己尝试着去说明,体验从反面去说明一个问题的方法,然后教师归纳小结.
根据学生说明,教师小结:
判定一个命题是假命题,只要举出一个反例即可,也就是说你所举命题符合命题的题设,但不满足结论.如“同位角相等”可如图, 与 是同位角但不相等就说明“同位角相等是假命题”.
反馈练习:课本第111页习题2.3A组第4题.
【教法说明】在做以上练习时一定让学生学会从反面思考问题的方法,再就是要澄清一些错误的概念.
反馈练习
投影出示以下练习:
1.指出下列命题的题设和结论
(1)两条平行线被第三条直线所截,同旁内角互补.
(2)两个角的和等于直角,这两个角互为余角.
(3)对项角相等.
(4)同角或等角的余角相等.
2.画图,写出已知,求证(不证明)
(1)同垂直于一条直线的两条直线平行.
(2)两条平行直线被第三条直线所截,同位角的平分线互相平行.
3.抄写下题并填空
已知:如图, .
求证: .
证明:∵ ( ),
∴ ( ).
∴ ( ).
【教法说明】以上练习让学生独立完成,第1题主要是训练学生分清命题的题设和结论;第2题是训练学生把命题转化为几何语言、几何图形的能力;第3题是让学生进一步体会命题证明的三个步骤.
总结、扩展
以提问的形式归纳出本节课的知识结构:
八、布置作业
(-)必做题
课本第110页习题2.3A组第3(2)、(3)、(4)题.
(二)思考题
课本第112页B组第l、2题.
作业 答案
A组(略)
B组1.已知两直线平行,同旁内角互补。
(两直线平行,同旁内角互补) (同角的补角相等).
2.已知:如图, , 、 分别平分 与 .求证: .