六年级数学下册第三单元《比例》练习(精选16篇)
六年级数学下册第三单元《比例》练习 篇1
目标
1.初步理解图形的放大和缩小,能利用方格纸按一定比例将简单图形放大或缩小,初步体会图形的相似,进一步发展空间观念。
2.联系图形的放大和缩小理解比例的意义,认识比例的“项”以及“内项”和“外项”;理解并掌握比例的基本性质,会应用比例的基本性质解比例。
3.结合实例,初步理解比例尺的意义和作用,会求平面图形的比例尺,能看懂线段比例尺,能按给定的比例尺求相应的图上距离或实际距离。
一、填空
1.表示( )个比( )的式子叫做比例。
2.在比例里,( )等于( )。
3.( ):( )=比例尺。在比例尺是1:100000的地图上,1厘米代表实际距离( )千米。
4.把线段比例尺 改写成数值比例尺是( )
5.a是b的1.75倍,a:b=( ):( )
6.两个正方形的边长比是2:3,面积比是( ):( )
7.根据等式4a=5b,写出a:b=( ):( )
二、选择题
1.在比例式2:5=18:45中,如果第二项扩大到原来的3倍,那么第一项应比例仍然成立。
a不变 b缩小到原来的1/3 c扩大到原来的3倍。
2.把3、2、15、10四个数组成比例是
a2:3=15:10 b3:15=2:10 c3:2=10:15
三、解决实际问题
1.在比例尺1:4的图纸上,量得一个零件的长是5毫米,这个零件的实际长度是多少厘米?如果把这个零件用6厘米的长度画在另一张图纸上,这张图纸的比例尺是多少?
2.在一幅地图上,用5厘米的线段表示实际距离200千米,这幅地图的比例尺是多少?在这幅地图上,量得长春市到吉林市之间的铁路距离是3.1厘米,求长春市到吉林市之间的铁路的实际长度是多少千米?
3.一种精密零件实际长2毫米,画在图上长4厘米。求这张图纸的比例尺。
4.把长480米,宽360米的操场画在比例尺1:12000的地图上,请画出这张图。
5.把高是60厘米的圆柱按5:1的比例截成两个小圆柱,截取后表面积比原来增加了50平方厘米。最小圆柱的体积是多少?
六年级数学下册第三单元《比例》练习 篇2
教学过程:
知识整理
1回顾本单元的学习内容,形成支识网络。
2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。
复习概念
什么叫比?比例?比和比例有什么区别?
什么叫解比例?怎样解比例,根据什么?
什么叫呈正比例的量和正比例关系?什么叫反比例的关系?
什么叫比例尺?关系式是什么?
基础练习
1填空
六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是( )。
小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是( )。
甲乙两数的比是5:3。乙数是60,甲数是( )。
2、解比例
5/x=10/3 40/24=5/x
3 、完成26页2、3题
综合练习
1、 A×1/6=B×1/5 A:B=( ):( )
2、9;3=36:12如果第三项减去12,那么第一项应减去多少?
3用5、2、15、6四个数组成两个比例( ):( )、( ):( )
实践与应用
1、如果A=C/B那当( )一定时,( )和( )成正比例。当( )一定时,( )和( )成反比例。
2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的和是5.4它们的比是5:4,这块钢板的实际面积是多少?
板书设计: 整理和复习
比例的意义
比例 比例的性质
解比例
正反比例 正方比例的意义
正反比例的判断方法
比例应用题 正比例应用题
反比例应用体题
教学要求:
1、使学生进一步理解比例的意义和基本性质,能区分比和比例。
2、使学生能正确理解正、反比例的意义,能正确进行判断。
3、 培养学生的思维能力。
六年级数学下册第三单元《比例》练习 篇3
教学目标
1.使学生理解并掌握比例的意义和基本性质.
2.认识比例的各部分的名称.
教学重点
比例的意义和基本性质.
教学难点
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.
教学过程
一、复习准备.
(一)教师提问复习.
1.什么叫做比?
2.什么叫做比值?
(二)求下面各比的比值.
12∶164.5∶2.710∶6
教师提问:上面哪些比的比值相等?
(三)教师小结
4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以
用等号连接.
教师板书:4.5∶2.7=10∶6
二、新授教学.
(一)比例的意义(课件演示:比例的意义)
例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:
时间(时)
2
5
路程(千米)
80
200
1.教师提问:从上表中可以看到,这辆汽车,
第一次所行驶的路程和时间的比是几比几?
第二次所行驶的路程和时间的比是几比几?
这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)
2.教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式
80∶2=200∶5或.
3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)
教师提问:什么叫做比例?组成比例的关键是什么?
板书:表示两个比相等的式子叫做比例.
关键:两个比相等
4.练习
下面哪组中的两个比可以组成比例?把组成的比例写出来.
(1)6∶10和9∶15(2)20∶5和1∶4
(3)和(4)0.6∶0.2和
5.填空
(1)如果两个比的比值相等,那么这两个比就比例.
(2)一个比例,等号左边的比和等号右边的比一定是的.
(二)比例的基本性质(课件演示:比例的基本性质)
1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)
2.练习:指出下面比例的外项和内项.
4.5∶2.7=10∶66∶10=9∶15
3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?
以80∶2=200∶5为例,指名来说明.
外项积是:80×5=400
内项积是:2×200=400
80×5=2×200
4.学生自己任选两三个比例,计算出它的外项积和内项积.
5.教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质
板书课题:加上“和基本性质”,使课题完整.
6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?
教师板书:
7.练习
应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.
6∶3和8∶50.2∶2.5和4∶50
三、课堂小结.
这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.
四、巩固练习.
(一)说一说比和比例有什么区别.
(二)填空.
在6∶5=30∶25这个比例中,外项是和,内项是和.
根据比例的基本性质可以写成×=×.
(三)根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.
1.6∶9和9∶122.1.4∶2和7∶10
3.0.5∶0.2和4.和7.5∶1
(四)下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)
2、3、4和6
五、课后作业.
根据3×4=2×6写出比例.
六、板书设计.
省略
六年级数学下册第三单元《比例》练习 篇4
教学过程:
一、复习铺垫
1、下面两种量是不是成正比例?为什么?
购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。
2、成正比例的量有什么特征?
二、探究新知
1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征成反比例的量。
2、教学P42例3。
(1)引导学生观察上表内数据,然后回答下面问题:
A、表中有哪两种量?这两种量相关联吗?为什么?
B、水的高度是否随着底面积的变化而变化?怎样变化的?
C、表中两个相对应的数的比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗?
D、这个积表示什么?写出表示它们之间的数量关系式
(2)从中你发现了什么?这与复习题相比有什么不同?
A、学生讨论交流。
B、引导学生回答:
(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。
(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:xy=k(一定)
三、巩固练习
1、想一想:成反比例的量应具备什么条件?
2、判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
(6)你能举一个反比例的例子吗?
四、全课小节
这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。
五、课堂练习
P45~46练习七第6~11题。
教学目的:
1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。
2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。
3、初步渗透函数思想。
教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式。
教学难点:利用反比例的意义,正确判断两个量是否成反比例。
六年级数学下册第三单元《比例》练习 篇5
教学内容:北师大版小学数学第十二册第二单元第30-31页。
教学目标:
1.让同学在实践活动中体验生活中需要比例尺。
2通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。
3运用比例尺的有关知识,通过丈量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
4同学在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养同学用数学眼光观察生活的习惯。
教学重点:正确理解比例尺的含义。教学难点:运用比例尺的有关知识,通过丈量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
教学准备 多媒体教学过程:
一、独立探究、合作生成
教师:请同学们在自身纸上画出长9米,宽7米的教室地面来。
同学1
有同学会发出质疑)哪有那么大的本子?不够画怎么办?
同学2:可以利用前面所学的知识----图形的放缩,把教室的长和宽都缩小一定的倍数在纸上表示出来。
教师:你的想法很对,跟笑笑同学的想法一样(用课件出示第31页笑笑家的平面图),在这幅图上你们发现了什么新问题?
同学:在图的右下方有“比例尺1:100”
教师:观察真仔细!比例尺1:100是什么意思?
1同学讨论。
2同学汇报:
同学1:图上1厘米长的线段表示实际100厘米。
同学2:图上距离是实际距离的1/100。
同学2:表示实际距离是图上距离的100倍。
3揭示比例尺的意义。
教师:比例尺是表示图上距离与实际距离的比,这就是今天要学习的新知识――比例尺(板书课题)
二、自然生成、进行应用
1教师补充板书:图上距离∶实际距离=比例尺
图上距离/实际距离=比例尺
2教师:你们在什么地方看到过比例尺?
同学1:在中国地图上。
同学:在世界地图上。
同学:在房屋设计图上。
……
2教师:比例尺1∶300是什么意思?(注重意思的.多样化)
同学交流(略)
3认识比例尺特征:
(1)课件出示中国地图的比例尺、世界地图的比例尺……
教师:通过观察,你们发现比例尺有什么特点?
同学:地图上的比例尺一般写成前项是1的比
4、运用知识,尝试解决问题:
教师:现在请大家量一量平面图中笑笑卧室的长是( )厘米,宽是( )厘米。
算一算笑笑卧室实际的长是( )米,宽是( )米,面积是( )平方米。
(1) 同学独立完成。
(2) 汇报算法
同学1:先量出卧室的长5厘米,实际长=5厘米×100=500厘米=5米
同学2:量出卧室的长4厘米,实际宽=4厘米×100=400厘米=4米
同学3:卧室的实际面积是5×4=20平方米
三、解决问题、巩固提高
1、算出笑笑家的总面积是多少平方米?
2、在家长卧室南墙正中有一扇宽为2米的窗户,在平面图上标出来。
3按比例尺是1:200,画出我们教室的平面图。
四、总结深化、活化知识
这节课大家有哪些收获?
五、研究性作业
1完成第30页的考虑题。
2、试画自身家庭的住宅平面图,并计算一下每个房间的面积。
六年级数学下册第三单元《比例》练习 篇6
1、比例的意义和基本性质
第一课时
教学内容:P32~34
比例的意义和基本性质
教学目的:
1、使同学理解比例的意义和基本性质,能正确判断两个比是否能组成比例。
2、通过引导探究、概括归纳、讨论、合作学习,培养同学笼统概括能力。
3、使同学初步感知事物间是相互联系、变化发展的。
教学重点;
比例的意义和基本性质
教学难点:
应用比的基本性质判段两个数能否成比例,并正确的组成比例。
教学过程:
一、回顾旧知,复习铺垫
1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。
教师把同学举的例子板书出来,并注明比的各局部的名称。
2、我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?教师板书出下面几组比,让同学求出它们的比值。
12:16
4.5:2.7
10:6
同学求出各比的比值后,再提问:哪两个比的比值相等?
(4.5:2.7的比值和10:6的比值相等。)
教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?这就是这节课我们要学习的内容。(板书课题:比例的意义)
二、引导探究,学习新知
1、教学比例的意义。
(1)出示P32例1。
每面国旗的长和宽的比分别是多少?指名分别算出一面国旗长和宽的比。
2.4:1.6
60:40
15:10
每面国旗长和宽的比值有什么关系?(都相等)
5: =2.4:1.6
60:40=15:10
2.4:1.6=60:40
象这样表示两个比相等的式子叫做比例。
比例也可以写成:= =
(2)我们也学过不同的两个量也可以组成一个比,如:
一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
时间(时)
2
5
路程(千米)
80
200
指名同学读题。
教师:这道题涉和到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。
这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问
边填写表格。)
“你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据同学的回答,板书:
第一次所行驶的路程和时间的比是80:2
第二次所行驶的路程和时间的比是200:5
让同学算出这两个比的比值。指名同学回答,教师板书:80:2=40,200:5=40。让同学观察这两个比的比值。再提问:你们发现了什么?”(这两个比的比值都是40,这两个比相等。)
教师说明:因为这两个比相等,所以可以把它们用等号连起来组成比例。(板书:80:2=200:5)像这样表示两个比相等的式子叫做比例。
指着比例式4.5:2.7=10:6提问:“谁能说说什么叫做比例?”引导同学观察是表示两个比相等。然后板书:表示两个比相等的式子叫做比例。并让同学齐读一遍。
“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必需具备什么条件?因此判断两个比能不能组成比例,关键是看什么?假如不能一眼看出两个比是不是相等的,怎么办?”
根据同学的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。假如不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。例如判断10:12和35: 42这两个比能不能组成比例,先要算出10: 12=,35: 42=,所以10:12=35:42。(以上举例边说边板书。)
(3)比较“比”和“比例”两个概念。
教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?
引导同学从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
(4)巩固练习。
①用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表示;不能就用两手的食指交叉表示。)
6:3和12:6
35:7和45:9
20:5和16:8
0.8:0.4和0.3:0.6
同学判断后,指名说出判断的根据。
②做P33“做一做”。
让同学看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自身做得对不对。
③给出2、3、4、6四个数,让同学组成不同的比例(不要求举全)。
④P36练习六的第1~2题。
对于能组成比例的四个数,把能组成的'比例写出来。组成的比例只要能成立就可以。
第4小题,给出的四个数都是分数,在写比例式时,也要让同学写成分数形式。
2、教学比例的基本性质
(1)教学比例各局部的名称。
教师:同学们能正确地判断两个比能不能组成比例了,那么比例各局部的名称是什么?请同学们翻开教科书P34,看看什么叫比例的项、外项、内项。
指名让同学指出板书中的比例的外项、内项。
(2)教学比例的基本性质。
教师:我们知道了比例各局部的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:
两个外项的积是80×5=400
两个内项的积是2×200=400
“你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×200“是不是所有的比例都是这样的呢?”让同学分组计算前面判断过的比例式。
通过计算,大家发现所有的比例式都有这个一起的规律,谁能用一句话把这个规律说出来?
最后教师归纳并板书出:在比例里,两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。
“假如把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80:2=200:5)教师边问边改写成:=
“这个比例的外项是哪两个数呢?内项呢?”
“因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积怎么样?
同学回答后,教师强调:假如把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。
3.巩固练习。
前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。
(1)应用比例的基本性质判断3:4和6:8能不能组成比例。
(2)P34“做一做”。
三、巩固深化,拓展思维
1、说说比和比例有什么区别?
2、填空
5:2=80
)
2:7=(
):5
1.2:2.5=(
):4
3、先应用比例的意义,再应用比例的基本性质,判断下面那组中的两个比可以组成比例。
(1)6:9和9:12
(2)1.4:2和7:10
(3)0.5:0 .2和:
4、下面的四个数可以组成比例吗?把组成的比例写出来。
2 、3 、4和6
四、全课小结,提高认识
通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
五、课堂练习,辅助消化
P36~37第3~6题。
六、课外补充,拓展延伸
1、判断。
(1)假如3×a=5×b,那么5:a=3:b。
(2):和:中,能与:组成比例的是: 。
(3)在一个比例中,两个外项分别是7和8,那么两个内项的和一定是15。
2、用、8、 、12四个数分别作为比例的项,你能组成几个比例?
3、请你用20以内的四个合数组成一个两个比的比值都是的比例。
六年级数学下册第三单元《比例》练习 篇7
【学习目标】
1、让学生在实践活动中体验生活中需要比例尺。
2、通过观察、操作与交流,体会比例尺的实际意义,了解比例尺的含义。
3、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
4、学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。
【教学重点】
正确理解比例尺的含义。
【教学难点】
运用比例尺的有关知识,通过观察、操作与交流,体会比例尺的实际意义,解决生活中的一些实际问题
【教学过程】
一、画图产生疑问、引入新知
1、画图
师:同学们,今天我们在上新课前先来画一画图,请同学们翻开课堂练习本,拿出尺子。
请在本子上画出一条长5厘米的线段。
请在本子上画出一条长12厘米的线段。
请大家在本纸上画一条长1米的线段。(生面有难色)
师:怎么不画了?有什么疑问吗?(本子没有1米长)那该怎么办呢?
(把1米长的线段缩短后,画在本子上)(生画)
2、引入新知
师:说一说,你是怎么画的?(生:10厘米、5厘米、或1厘米长的表示(板书)
师:看来同学们的表示方法各不相同,像2厘米、5厘米、10厘米这些在图上画出的线段的长度,我们叫“图上距离”,而这1米就叫“实际距离”。
师:但是如果把黑板上的数据1米擦去,只把本子上的2厘米、5厘米线段图给别人看,别人能知道你表示的实际距离是1米吗??那么今天,我就向大家介绍一位新朋友,它就是《比例尺》!(板书)
二、自主探究,理解比例尺的意义
1、理解比例尺意义
师:大家请看笑笑同学就根据比例尺的知识画出了他家的平面图,你看他图中的比例尺是?你知道1:100是什么意思吗?同学们思考一下,把你的想法跟同桌说一说(生思考交流)
生汇报:1表示图上距离、100表示实际距离
图上的1厘米的线段,表示实际的100厘米,
实际距离是图上距离的100倍。
师:对,图上的1厘米,表示实际的100厘米,因此比例尺实际上就等于图上距离与实际距离的比(板书:比例尺=图上距离/实际距离)生读一读
2、生活中的比例尺
师:生活中,你在哪些地方有见过比例尺?)黄老师也收集了一些,请同学们看一看(出示各图,分别让学生读出图中的比例尺并说出它们表示的意义)
3、自己写一个比例尺
师:现在你们自己在本子上写一个比例尺,并向同桌说一说它表示的意思
生汇报
4、总结比例尺的特点
师:我们现在初步的认识了比例尺,你有没有发现比例尺有什么样的特点?(生说)总结:是一个比;图上距离和实际距离的单位是统一的;比例尺的前项一般为1
三、运用知识,尝试解决问题。
1、解决第2小题
师:同学们,笑笑按比例尺1:100画出了她家的平面图,他想带我们看看他的卧室,请大家把书翻到30页,先请大家量出他卧室长宽的图上距离是多少吧?(课件)
(1)量出笑笑卧室的长和宽
师:你们量出了笑笑卧室长是?宽是?那你们算出笑笑卧室实际的长和宽吗和面积吗?(课件出示)试一试,并把你的解题思路写在练习本上。
(2)算出笑笑算一算笑笑卧室实际的长是米,宽是米,面积是平方米。
a:学生独立完成。(师巡视)
b:学生汇报计算方法。(展示仪展示)
小结回顾
想一想,我们刚才在求笑笑卧室面积的过程中都经历了哪些程序?(先量出图上距离,在求出实际距离,然后才能算出面积)
2、解决笑笑家的总面积是多少平方米?
先让学生讨论一下,再汇报方法,然后再计算
学生汇报计算方法。(展示仪展示)
3、解决第4题
师:笑笑在设计图时还遇到了难题,我们一起来帮帮她吧!
(课件出示在父母卧室的南墙正中有一扇宽为2米的窗户,在平面图上标出来。)
(1)分析题意,让学生说一说(这道题什么意思呢?谁来说一说)
(1)学生交流想法。
(2)学生独立完成。
生1:2米=200厘米200/100=2厘米
生2:200÷100=0。02米0。02米=2厘米
师:同学们的表现都非常的出色,笑笑还为我们出了道难题,大家敢于应战吗?
4、解决第5题
(课件出示:笑笑的卧室长4米,画在图纸上,她用8厘米表示自己卧室的长。)
1、图上1厘米表示的实际距离是多少厘米?
2、她画的平面图的比例尺是多少?
生:小组合作、讨论、探究、反馈汇报。
四:全课总结
师:通过前面的学习,你能谈谈自己的收获
六年级数学下册第三单元《比例》练习 篇8
漏洞一:教材中有语句错误
教材第31页比例基本性质下面有这样一句话:“你能应用比例的基本性质,判断下面的两个比能否组成比例吗?”这明显是一个病句,应该去掉“否”字或去掉“吗?”加个句号。
补丁:改这句话为“你能应用比例的基本性质,判断下面的两个比能否组成比例。”或“你能应用比例的基本性质,判断下面的两个比能组成比例吗?”
漏洞二:解比例概念定义不准确
教材给解比例的定义是:“求比例中的未知项,叫做解比例。”我以为这与“解方程”的定义相矛盾,解方程是一个过程,解比例也应该是一个过程,解方程的概念是:“求未知数解的过程叫做解方程。”因此,解比例的概念应该是:“求比例中未知项的过程,叫做解比例。”
补丁:改解比例的概念为“求比例中未知项的过程,叫做解比例。”
漏洞三:对比例尺的意思描述不到位
在教材第35页有比例尺1:1000,教材上说它的意思是图上1厘米的线段,表示实际1000厘米的距离。其实,它的意思是图上1厘米的长度,表示实际1000厘米的长度,不一定强调是线段才表示实际长度是图上长度的1000倍,或图上长度是实际长度的。要是图上为弯曲的线是不是就不可以测算出实际长度呢?答案是否定的。
补丁:“1:1000的意思是图上1厘米的长度,表示实际1000厘米的长度。”这样就会更精确些。
漏洞四:正、反比例的意义用词不精炼
数学语言要求精炼、易懂。而这部分内容学生看书自学不易懂,甚至老师讲了也有一部分学生不懂,不知道题目要让自己干什么,格式怎么写,学生感到不知所措,除了内容多、语句多、例题多外,跟正、反比例的意义用词不精炼有很大关系,为什么不能简化一下呢?我以为有的词语完全可以去掉。例如:教材中正比例意义是这样:“两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。”这个概念中第四句话“比值”前用了四个定语是:“这两种量中”“相对应的”“两个数的”“比的”。有的定语根本不需要,有的前面有了,用了就重复,应该去掉正比例意义中“这两种量中”和“比的”这两个定语,去掉反比例意义中“这两种量中”这个定语。若不能去掉,反比例的意义中第四句话也应该有这么多定语啊,这句话应该说成:“如果这两种量中相对应的两个数的相乘的积一定”,可见,教材中没有这样说,说明正比例意义的概念可以简化,且不影响概念的准确性。
补丁:正比例意义改为:“两种相关联的量,一种量变化,另一种量也随着变化,如果相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。” 反比例意义改为:“两种相关联的量,一种量变化,另一种量也随着变化,如果相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。”
漏洞五:练习题中多处少必要的“省略号”
教材中有多处表格式练习题让学生判断两种相关联的量是否成正比例或反比例,都少了必要的省略号,这是不科学的,影响了老师和学生的思维。如教材的第41、44、46、47、49页都出现了同样的问题,这会给学生一个误导。
补丁:在相应的题目里补上省略号。
以上几点拙见,不知老师们是否有同感,敬请批评指正。
六年级数学下册第三单元《比例》练习 篇9
学情分析:
掌握各部分量占总数量的几分之几,能熟练地按已知一个数求它的几分之几是多少,用乘法求各部分量的新方法。
教学难点:
能根据实际情况,判断各部分量之间应该按怎样的比例来分配。
教学重点:
掌握按比例分配应用题的特征及解题方法.教学难点:按比例分配应用题的实际应用
教学目标:
1、使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;
2、培养学生应用所学数学知识解决实际问题的能力;
3、通过实例使学生感受到数学来源于生活,生活离不开数学。
教学策略:
引导学生将比转化成分数、份数,指导学生试算
教学准备:
学生课前作调查;
教学过程:
一、导入
1、看题目:“比的应用”,你想知道什么?
2、小小调查员:前几天,我已经请同学们去作了课外调查,看看在我们日常生活中,哪些地方用到了比的知识。下面,请汇报一下你调查到的信息。
3、小结:通过调查,我们已经初步感受到比和我们的日常生活有密切的联系。今天,我们就随一位小朋友:小明一起去看看,比在生活中有什么用处?
二、新课
1、配置奶茶
星期天的上午,小明家来了一位客人。刚巧爸爸妈妈有事出去了。于是小明就做起了小主人,亲自招待这位王叔叔。
师:请客人坐下后,一般要干什么?(泡茶)对,这是待客的基本礼仪。小明打算亲手配制一杯又香又浓的奶茶,招待王叔叔。
(1)奶茶中,奶和茶的比是2:9。看了这句话,你知道了些什么?
(2)小明想要配制220毫升的奶茶,
(a)先要解决什么问题?(奶和茶各取多少毫升?)
(b)请你先独立计算一下,奶和茶各取多少毫升?
(4)评价
(a)请你谈谈你对这些不同解法的看法?你比较喜欢哪一种解法,为什么?
(b)其实,这些方法都很好。不过,第(b)种解法是我们今天所学到的一种新方法。它是“把一个数量按照一定的比例分配”的问题,我们把它叫做“按比例分配”。(显示课题,齐读)
2、计算电费
(1)刚才小明就按大家计算的结果给王叔叔配制了一份奶茶。王叔叔在小明家坐了一会儿,刚巧看到桌子上放着一张电费的清单。原来,“小明家和另外两户居民合用一个总电表。九月份共应付电费60元。”(显示)王叔叔想看小明这个小主人合不合格,就问小明:“你们家上个月交了多少元电费?”
(a)你觉得小明家应付多少元电费?你是怎么想的?
(b)你为什么不同意他的想法?(不公平)
(2)其实小明这个小主人,当得还是挺合格的。他告诉王叔叔,他们三户居民都装了分电表。上个月用电情况是这样的:(显示下表)
(3)同学们,你们能帮小明算一算吗?
3、分配奖金
我们运动队的队员们每天都进行刻苦训练。辛勤的汗水终于换来了丰收的果实。在前不久举行的全市中小学生运动会上,他们夺得了第三名的优异成绩。下面是运动员的参赛项目个数和得分情况:(显示表格)
学校决定共给这几位同学1200元的奖金。假如让你来分配,你将怎么分配这些奖金呢?
(5)小结:到底学校会怎么奖励运动员们,我们下午见分晓。不过,不管以怎样的形式奖励运动员,重要的不在于奖金的多少,而在于对他们平时的刻苦训练以及赛场上的奋力拼搏的一种肯定。
三、课堂小结
今天这堂课我们学习了“按比例分配”,你有什么收获?
六年级数学下册第三单元《比例》练习 篇10
本单元教学“数与代数”领域的比例知识,还教学“空间与图形”领域的图形放大或缩小,以及比例尺的知识,把不同领域的教学内容有机融合是教材的一大特点。图形的放大或缩小是认识比例的现实素材,比例能揭示图形放大或缩小的数学含义,而且解决图形放大或缩小、比例尺的实际问题要应用比例的知识。把两个领域的内容融合能发挥数形结合的作用,提高教学效率。
全单元编排七道例题和三个练习,把全部内容分成三段教学。例1 ~ 例 3以及练习九,主要教学图形放大、缩小的含义,比例的意义。例4、例5以及练习十,主要教学比例的基本性质、解比例,解决图形放大或缩小的实际问题。例 6、例7以及练习十一,教学比例尺的知识和实际应用。另外,还编排了实践活动《面积的变化》,研究图形放大或缩小时边长与面积的变化关系。
1.联系实际,建立图形放大、缩小的概念。
数学里图形放大或缩小的含义与生活中的放大、缩小经常是不同的。生活中会把图形由小变大视作放大,由大变小视为缩小。数学里的图形放大或缩小,它的每条边都按一定的比例变化,即每条边的长度都放大到原来的几倍或缩小到原来的几分之一。例1教学图形放大、缩小的含义,先观察在电脑上放大长方形的现象,分别研究长方形放大后与放大前长、宽的关系。然后联系长方形放大揭示图形放大的数学含义。教材依次讲了三句话:首先是“长方形的每条边放大到原来的2倍”,这是对长放大到原来的2倍,宽也放大到原来2倍的概括。然后是“放大后的长方形与原来长方形对应边长的比是2∶1”,用比描述图形放大时边的长度变化。这里把放大前、后两个长方形的长称为对应边,宽也称为对应边,必须把放大后图形的边的长度作为前项,原来图形的边的长度作为后项。最后是“把原来的长方形按2∶1 的比放大”,让学生体会由于放大后与放大前两个长方形的对应边的长度关系是2∶1,因而把图形的放大说成2∶1。这里还示范了图形放大的规范表述“按 2∶1的比放大”。
在初步理解图形放大的基础上,教材引导学生主动迁移,认识图形的缩小。让学生说说缩小后的长方形的长、宽分别是原来长方形的几分之几,解释图形按1∶2缩小的含义,初步形成图形缩小的概念。
例 2在方格纸上画图形。“利用方格纸等形式按一定比例将简单图形放大或缩小”是《标准》的要求,因为方格能直观显示每条边的变化情况,操作方便,有利于概念的应用和巩固。教材引导学生在画图前先思考放大(或缩小)后图形的长、宽各是几格,应用概念进行推理,为正确画图做准备。在画图以后,还要观察原来的图形、放大后的图形、缩小后的图形,再次体会图形放大、缩小时,每条边的长度都按相同的比变化。练习九第1题能使学生进一步清晰图形放大、缩小的概念。方格纸上的⑤号图形是①号长方形放大后的图形,因为⑤号图形的长、宽分别是①号图形长、宽的3/2;③号图形是①号长方形缩小后的图形,因为③号图形的长、宽分别是①号长方形长、宽的1/2。而②号、④号图形与①号长方形比,各条边没有按相同的比变化,它们都不是①号长方形缩小或放大后的图形。
根据图形的放大或缩小,可以写出许多关于线段长度的比。在例3的情境中,长方形照片放大后与放大前的长的比是9.6∶6.4,宽的比是6∶4;放大前长方形长与宽的比是6.4∶4,放大后长方形长与宽的比是9.6∶6。前面两个比在例1和例2里已经多次接触,例3引导学生写出后面两个比,利用这两个比教学比例的意义。先分别计算6.4∶4和9.6∶6的比值,从比值都是1.6得出这两个比相等,可以写成6.4∶4=9.6∶6或6.4/4=9.6/6,指出表示两个比相等的式子叫做比例,突出比例是比值相等的两个比组成的等式。然后让学生思考放大后与放大前两张照片长的比和宽的比也能组成比例吗,经历写出比、算比值、发现比值相等、组成比例的过程,体会比例的意义。“练一练”的四组比中,如果同组的两个比的比值相等,就可以组成比例;如果比值不相等,两个比就不能组成比例,进一步巩固比例的概念。
长方形放大后与放大前的长的比和宽的比相等,是例1教学的图形放大的含义。在例3中,又发现长方形放大前长与宽的比和放大后长与宽的比相等,从新的视角体会了图形放大的含义。例3既从放大前长与宽的比和放大后长与宽的比组成比例,又从放大后与放大前长的比和宽的比组成比例,引导学生利用比例的意义进一步完善图形放大的概念。
除了图形放大与缩小,从常见的数量关系中也能找到比例。练习九第3题,一辆汽车上午行驶的路程和时间的比与下午行驶的路程和时间的比能组成比例。第7题购买同一种铅笔,总价与数量的比能组成比例;大小不同的正方形,周长与边长的比能组成比例。这些素材能加强对比例的理解,还为以后教学正比例作了铺垫。
2.联系实际,发现和应用比例的基本性质。
例4教学比例的基本性质,大致分五步进行:
第一步在按比例缩小三角形的情境中写出一些比例,为研究比例的基本性质准备充分的素材;第二步教学比例的内项和外项,这是认识比例基本性质必须具备的概念;第三步观察已经写出的几个比例,初步发现比例的两个外项的积等于两个内项的积;第四步重新写出一些比例,看看是否具有同样的规律,并在字母表示的比例上概括这样的规律;第五步指出发现的规律是比例的基本性质,并在写成分数形式的比例上体会这一性质。
把三角形按比例缩小,联系图形缩小的含义,学生可能想到缩小后与缩小前两个三角形底的比和高的比相等,或者高的比和底的比相等,还可能想到缩小前、后每个三角形底与高的比相等,或者高与底的比相等。于是,在交流时出现四个不同的比例。教材指出3∶6=2∶4里的3和4是比例的外项,6和2是比例的内项,让学生说说其他三个比例的内项和外项各是几。学生容易发现,如果6和2同时做比例的外项,那么3和4是比例的内项;如果6和2同时做比例的内项,那么3和4是比例的外项,从而体会这几个比例两个外项的积等于两个内项的积。再写出一些比例,看看是否有同样的规律,检验前面四个比例的规律是不是适用于所有的比例。通过更丰富的实例,进一步体会两个外项的积等于两个内项的积是所有比例的共同规律。在此基础上,把比例用字母表示成a∶b=c∶d,写出a×d=b×c,概括了上面的规律,通过符号化的方式表示了比例的基本性质。
“试一试”应用比例的基本性质,判断3.6∶1.8和0.5∶0.25能否组成比例。思考线索应该是:
如果这两个比能够组成比例,那么3.6×0.25的积与1.8×0.5的积应该相等;如果这两个比不能组成比例,那么3.6×0.25的积与1.8×0.5 的积不相等。于是分别计算3.6×0.25和1.8×0.5,并比较两个积的大小。“练一练”是“试一试”的延伸,由于6×12=4×18,所以6、4、 18和12这四个数能组成比例。而4、5、6和8这四个数不能组织积相等的两个乘式,因而它们不能组成比例。把6、4、18和12组成比例,可以把6和 12同时作外项,4和18同时作内项,也可以把6和12同时作内项,4和18同时作外项,一共能写出8个不同的比例。对于每个学生来说,只要求写出一个比例,并在交流时知道还能写出其他比例,不要求每个学生都写出8个比例。
例 5应用比例的知识解决图形放大的实际问题,包括根据图形放大的含义列出比例,以及利用比例的基本性质解比例两个内容。先根据“照片放大后与放大前长的比和宽的比能组成比例”这个知识写比例,发现要写的比例里有三个项是已知数,另一个项是未知数,于是想到把放大后照片的宽设为x厘米,列出比例解决问题。这个比例也是一个方程,教材写出了解方程的第一步6x=13.5×4,让学生思考这一步计算的依据是什么,体会这里应用了比例的基本性质,最后还指出求比例中的未知项叫做解比例。
“ 试一试”解写成分数形式的比例,进一步熟悉比例的内项和外项。已经写出“1.2x=”引导学生应用比例的基本性质,体会这是解比例的关键步骤。“练一练” 解分别由整数、分数或小数组成的三个比例,要应用整数、分数或小数的乘、除计算。教材里没有出现分数与小数共同组成的比例,是因为《标准》不要求进行分数与小数的乘、除计算。
3.以图形的放大、缩小为基础,教学比例尺。
平面图是把现实的平面按一定比例缩小绘制成的,从平面图想像实际平面的数学活动是把图形放大,比例尺刻画了平面图和实际平面之间的放大、缩小关系。
例 6教学比例尺的意义,首先要让学生在实际情境中识别实际距离和图上距离,这些是与比例尺有关的概念。其次分别写出草坪长的图上距离和实际距离的比,宽的图上距离和实际距离的比。在写比的时候,要指导学生统一图上距离与实际距离的单位,便于写比和化简比。通过交流,体会把实际距离改写成以厘米为单位的数量,写出的是整数比,把图上距离改写成以米为单位的数量,写出的是小数比,前者比后者更方便一些。例题的教学重点是建立比例尺的概念,先指出图上距离和实际距离的比叫做平面图的比例尺,由于学生已经两次写出这样的比,所以建立比例尺的概念是感性认识的抽象提升;再用数量关系式进一步表达比例尺的意义和计算方法,教材里同时出现“图上距离∶实际距离=比例尺”和“图上距离/实际距离=比例尺”。
比例尺1∶1000表示图上距离是实际距离的1/1000,实际距离是图上距离的1000倍,这是对比例尺1∶1000的意义作出的具体解释。教材让学生说出这些关系,进一步体会比例尺的意义。从图上距离与实际距离间的倍数关系,还能得到图上距离1厘米表示实际距离10米,这就引出了比例尺的另一种表示形式 ――线段比例尺。数值比例尺和线段比例尺都是比例尺的表示形式,它们可以相互转化。例题从数值比例尺引出线段比例尺,“练一练”第1题分别解释数值比例尺与线段比例尺的具体含义,两种形式的比例尺之间的关系就能得到沟通。第2题求平面图的比例尺,学生在例题里进行过写出图上距离与实际距离的比并化简的活动,应该有能力独立完成这道题。
例 7已知平面图的比例尺以及明华小学到少年宫的图上距离,求两地之间的实际距离。由于学生对比例尺1∶8000的意义会有不同的解释,因而可能出现不同的解题思路和方法。有的学生会从图上距离与实际距离的倍数关系进行思考,有的学生会把数值比例尺转换成线段比例尺,列式和计算比较方便。例题还引导学生用解比例的方法解题,表示比例尺意义的数量关系式是列比例依据的相等关系。“试一试”里根据已知的比例尺和实际距离,求图上距离。虽然已知条件和要求的问题与例题不同,但解题思路是一致的,对比例尺的意义作出具体解释是思考的关键,教材允许学生按自己的思路选择解法。要注意的是,“试一试”要求在例7的平面图上表示出医院的位置,算出学校到医院的图上距离后解题并没有结束,还要在学校正北方3厘米处作个记号表示医院,并在学校与医院之间连条线段。
4.进一步研究图形放大,发现面积与长度变化的关系。
《面积的变化》分三段设计实践活动。第一段的活动有:分别测量放大前、后两个长方形的长和宽,根据图形放大的含义写出对应边长的比;估计两个长方形面积的比;利用测量得到的边的长度计算两个长方形的面积比。这一段活动的目的是进一步巩固图形放大的概念,体会图形放大,面积扩大的倍数与边长扩大的倍数是不相同的。第二段的活动有:依次测量正方形、三角形、圆放大前、后的有关长度;分别计算各个图形放大前、后的面积,把长度与面积的数据填入教材的表格里;研究图形放大后与放大前的边长比与面积比之间的关系。这一段活动要通过几个实例的研究,发现图形放大,面积扩大的倍数是长度扩大倍数的平方。第三段在东港小学的校园平面图里选择一幢建筑或一处设施,测量图上的长度,算出实际占地面积,应用前面发现的规律。因为这幅平面图的比例尺是1∶1000,实际距离是图上距离的1000倍,所以实际面积是图上面积的倍数就是1000的平方,计算必须细心,防止错误。当然,也可以利用图上距离与比例尺,先算出实际距离,再计算实际面积。不过,这种方法没有应用发现的规律,要尽量引导学生采用前一种方法,体验发现规律的乐趣和应用规律的意义。
六年级数学下册第三单元《比例》练习 篇11
教学要求:
1.使学生认识比例尺的意义,学会求一幅平面图的比例尺。
2.使学生感受数学在解决问题中的作用,提高学生学习数学的兴趣和信心。
教学重点:
认识比例尺的意义。
教学难点:
求一幅平面图的比例尺。
教学过程:
一、铺垫孕伏:
1.填空
1千米=米1米=分米1分米=厘米1厘米=毫米
30米=厘米15千米=厘米300厘米=分米
2.解比例(口述过程)
5/x=1/4x/60=1/20
二、自主探究:
教学比例尺的意义
1.出示一张校舍平面图。
说明:这是学校的平面图,它是按照我们所学的比例知识,按照一定比例缩小后画在图纸上的。图里所量出的长度叫图上距离,与图上对应的地面上的长度是实际距离。(再举例说明,并板书:图上距离实际距离)
2.出示例1
让学生算出结果。指名口答.老师板书解题方法和结果。再让学生说说求这个问题时要注意什么问题?(统一单位)提问:从求出的结果来看,你知道这张平面图的图上距离和实际距离的比是多少?(板书:图上距离和实际距离的比)
3.比例尺的意义。
在我们的日常生活中处处都有数学,经常要用到数学。像上面这样的问题,就通过数学方法,把实际的大小按图上距离和实际距离的比画了出来。在绘制地图和其他平面图时,我们把图上距离与实际距离的比,叫做这幅图的比例尺。(板书:叫做比例尺)提问:什么是一幅图的比例尺?根据黑板上这句话想一想,比例尺是怎样得到的?(板书:图上距离:实际距离=比例尺)上面题里平面图的比例尺是多少,(板书:1:50000)你现在知道比例尺是用什么形式表示的吗?强调比例尺是一个比。说明为了计算简便,通常把比例尺写成前项为l的比,这种比例尺叫做数值比例尺。
4.线段比例尺。
提问:你知道上面所述的比例尺表示的具体意义吗,(1厘米表示实际距离50000厘米,也就是500米)说明比例尺还可以用线段来表示。提问:谁来说一说这幅线段比例尺表示的具体意义。
三、组织练习
1.判断下面这段话中,哪些是比例尺,哪些不是?为什么?
(1)图上长与实际长的比是1/400。
(2)图上宽与实际宽的比是1:400。
(3)图上面积与实际面积的比是1:160000。
(4)实际长与图上长的比是400:1。
让学生做在作业本上,小组交流,再集体订正。
四、课堂小结
这节课学习了什么内容,(板书课题)你学到了什么?在本节课的学习中有什么体会?
六年级数学下册第三单元《比例》练习 篇12
数学教案设计是数学课堂教学活动的一个重要组成部分,下面要为大家分享的就是比和比例教案,希望你会喜欢!
教学目标:
培养学生的观察能力、判断能力。
学法引导:
引导学生通过观察、讨论、计算、探究、验证等方法研究比例的意义和比例的基本性质。
教学重点:
比例的意义和基本性质。
教学难点:
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。
教学过程:
一、回顾旧知,复习铺垫
同学们,今天数学课上有很多有趣的问题等待你们来探索和发现,希望大家都能有收获。大家有没有信心?
1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。
教师把学生举的例子板书出来
2、老师也准备了几个比,想让同学们求出他们的比值,并根据比值分类。
2:3 4.5:2.7 10:6
80:4 4:6 10:1/2
提问:你是怎样分类的?
教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:两个比相等4.5:2.7=10:6 12:16=3/5:4/5 80:4 =10:1/2)像这样的式子叫做比例。这就是这节课我们要学习的内容。(板书课题:比例的意义)
二、引导探究,学习新知
1、教学比例的意义。
(1)教学例题。
先出示教材上的四幅图,请同学说说图的内容。找一找四幅图中有什么共同的东西。再出示四面国旗长、宽的尺寸。
师:选择其中两面国旗(例如操场和教室的国旗),请同学们分别写出它们长与宽的比,并求出比值。
提问:根据求出的比值,你发现了什么?(两个比的比值相等)
教师边总结边板书:因为这两个比的比值相等,所以我们也可以写成一个等式
2.4∶1.6 = 60∶40 像这样由两个相等的比组成的式子我们把它叫做比例。
师:在图上这四面国旗的尺寸中,还能找出哪些比来组成比例?
比例也可以写成分数形式:4.5/2.7= 10/6请同学们很快地把黑板上我们写出的比例,改写成分数形式。
(2)引导概括比例的意义。
同学们,老师刚才写出的这些式子叫做比例,那么谁能用一句话把比例的意义总结出来呢?(根据学生的回答板书比例的意义。)
(3)判断。举一个反例:那么2:3和6:4能组成比例吗?为什么?
“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?(看两个比的比值是否相等)如果不能一眼看出两个比是不是相等的,怎么办?”(根据比例的意义去判断)
根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比比值求出来以后再看。
(4)比较“比”和“比例”两个概念。
教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?
引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
(5)反馈训练
用手势判断下面卡片上的两个比能不能组成比例。
6:3和12:6 35:7和45:9
20:5和16:8 0.8:0.4和4:2
2、教学比例的基本性质。
(1)自学课本,了解比例各部分的名称,理解各部分的名称与各项在比例中的位置有关。
( 2 )检查自学情况:指名说出黑板上各比例的内外项。
(3)探究比例的基本性质。
师:在比例的内外项之间,存在着一个有趣的特性(比例的基本性质),大家想不想研究?(板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书
两个外项的积是4.5×6=27
两个内项的积是2.7×10=27
“你发现了什么?”(两个外项的积等于两个内项的积。)板书:4.5×6=2.7×10
(4)计算验证,达成共识。
师:“是不是所有的比例都有这样的性质呢?”让学生分组计算判断前面的比例式,发现所有的比例式都有这个共同的规律。
(5)引导小结比例的基本性质。
师:通过计算,大家,谁能用一句话把这个规律概括出来?
教师归纳并板书:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。
师:“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着4.5/2.7=10/6) “这个比例的外项是哪两个数呢?内项呢?”
学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。
(6)判断。前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。
反馈训练:应用比例的基本性质判断3:4和6:8能不能组成比例。
三、巩固深化,拓展思维。
(一)判断
1.两个比可以组成一个比例。 ( )
2.比和比例都是表示两个数的倍数关系。 ( )
3.8:2 和1:4能组成比例。 ( )
(二)、用你喜欢的方式,判断下面那组中的两个比可以组成比例。把组成的比例写出来。
(1) 6:9和 9:12 (2)14:2 和 7:1
(3) 0.5:0 .2和 5:2 (4)0.8:0.4和0.3:0.6
(三)填空
(1)一个比例的两个外项互为倒数,则两个内项的积是( ),如果其中一个内项是2/3,则另一个内项是,如果一个比例中,两个外项分别是7和8,那么两个内项的和一定是。
(2)如果2:3=8:12,那么,x=x。
(3)写出比值是4的两个比是、,组成比例是。
(4)如果5a=3b,那么,a:b=:( )
(四)下面的四个数可以组成比例吗?如果能,能组成几个?把组成的比例写出来。
2 、3 、4和6
拓展题:猜猜括号里可以填几?
5:2=10:( ) 2:7=( ):0.7 1.2:2.5=( ):25
四、全课小结,提高认识
通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
五、布置作业。
练习六2、3、5
六年级数学下册第三单元《比例》练习 篇13
教学时间:
3月20日
教学内容:
P50 51
教学目标:
1、使学生进一步理解比的意义,了解比与除法、分数的关系。
2、使学生初步理解、掌握比的基本性质,并能应用这一性质化简比。
教学过程:
一、准备练习:
1、求下列各比的比值。
15212:201:1:1.5:2.52123
2、在里填上适当的数。
3=÷=:43×415÷36====4124×20÷5
第1题:分数与除法的关系;第2题:
2、引入:
除法有商不变性质,分数有基本性质,那么比有没有类似的性质呢?这节课我们就来研究这方面的知识。
二、教学新课:
1、用比较的方法讨论比和除法的关系。
除法
分数
比被除数除号(÷)除数商分子前项分数线(―)比号(:)分母后项分数值比值
⑴、根据分数和除法的关系,启发学生填写表中“分数”一栏中各空格,观察此表,
得到比和分数的关系;
⑵、比、分数、除法之间又有什么区别呢?(除法是一种运算;分数是一种数;比是
两个数相除,表示两个数量之间的关系。三者之间不是同一种概念,所以讲三者
的关系时,只能用“相当于”,不能用“等于”。)
⑶、板演:把下面各比化成分数形式,并读出来。
15:4=16:125=7:1=
⑷、除法的除数、分数的分母都不能为“0”,为什么?6:5=
比的后项能不能为“0”,为什么?
2、比的基本性质。
⑴、回答:求比值:
3612:4=3=36:2=312
⑵、引导学生观察思考:
①、这三道题什么地方相同?
②、第2个比的前项和后项与第1个比的前项和后项比有什么变化?
③、第3个比的前项和后项与第1个比的前项和后项比有什么变化?
⑶、比值有没有变化?后前项又是怎样变化的?
⑷、这就是我们今天学的“比的基本性质”(揭题),请同学们阅读P52红框中字,读
后问:
①、什么是比的基本性质?在比的基本性质里面哪几个词最重要?为什么?(都、
相同、比值、不变)
②、“零除外”是什么意思?为什么不能都乘以或除以0?(都乘以或除以0后比
的后项就为0了。)
3、化简比。
⑴、应用比的基本性质可以把比化成整数比。
①、什么叫整数比?
②、下面哪些是整数比?哪些整数比最简单?为什么?
6:1012:210.3:0.40.25:1
113:54:73:4:45
教师小结:
像3:5、4:7、3:4等这些整数比,比的前项和后项都是整数,而且这两个数是互质数,,我们称这样的比为“最简整数比”,化成最简整数比简称“化简比”。
⑵、怎样化简比呢?(自学课本P52例1、例2)
小结:
整数比化简的方法是把比的前项和后项同时都除以它们的最大公约数。
分数比化简的方法是先把前、后项同时都乘以分母的最小公倍数。
三、巩固练习:
化简下面各个比:
33590.25:1.25:0.25:1410120.03
四、小结:
今天你学会了什么?
五、作业:
P511P522---4
教学反思:
教学从复习除法商不变性质和分数基本性质开始,再让学生明确比、除法和分数的联系与区别之后,自然过度到比的性质的推断上来。有的学生很快说出了比的基本性质,并且思维缜密,连限制条件都考虑全面,多数同学都很快理解并记住了比的基本性质,顺利完成了知识迁移。个别同学能理解定义,但语言叙述不完整。
教学采用的猜想、验证的教学方法费时较多,原因是部分同学对自己的猜想缺少验证方法而束手无策,在少数同学用数字来验证时,他们才若有所悟。这种单一的验证方式,与我所设想的用除法商不变性质或分数基本性质来验证相去甚远。这一环节的展开也使后面的知识学习和基本技能训练显得仓促,可见学生的数学思维能力不是一朝一夕就能培养出来的,得经过实际操作,在实践中得到。
六年级数学下册第三单元《比例》练习 篇14
教学内容:
正比例的意义。
教学目的:
使学生理解正比例的意义,会正确判断成正比例的量,培养学生的判断能力。
教学重点:
正比例的意义。
教学难点:
正比例的判断。
教具准备:
小黑板、投景影片
教学过程:
一、复习
根据下面各题,先口答列式及得数,后说数量关系式。
1、一列火车2小时行驶250千米,平均每小时行驶多少千米?
2、一种布,买3米共要27元,平均每米布多少元?
3、某印刷厂5天生产2.5万本练习册,平均每天生产多少万本练习册?
师据学生回答板书如下:
路程/时间=速度总价/数量=单价工作总量/工作时间=工作效率
二、引新
我们已经学过一些常见的数量关系,如上面这些速度、时间和路程的关系,单价、数量和总价的关系,工作效率、工作时间和工作总量的关系等。现在我们进一步来研究这些数量关系中的一些特征。如速度一定,路程和时间有什么关系?或者时间一定,路程和速度之间有什么关系?这节课我们先来学习这方面的知识。正比例的意义。(板书)
三、新授
1、教学例1。一列火车行驶的时间和所行的路程如下表。
时间(时)12345678
路程(千米)90180
(1)引导学生观察上表内数据。
(2)边观察边思考下面问题:
(1)表中有哪几种量?这两促量有没有关系?
(2)这两种量是怎样设化的?(路程是随着时间的变化页变化。时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。)
(3)引导学生分析这两种相关联的量的变化有什么规律?
(1)从表内找出几组相对应的两个数,求出比值,再比较比值的大小。指名口答,师板书:
90/1=90360/4=90540/6=90
(2)从下面的比式中,你能不能找出变化规律?这个90实际上就是这列火车的什么?(速度)
(3)师:它们之间的关系可以用式子表示
路程/时间=速度(一定)
(4)小结。
时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总是一定的。
2、教学例2
(1)出示例2,在布店的柜台上,有像下面一张写着某种花布的米数和总价的表。
数量(米)1234567
总价(元)8.216.424.632.841.049.257.4
(2)引导学生观察上表内的数据。
(3)回答下面风个问题:
表中有哪两种量?这两种量有关系吗?为什么?
这两种量是怎样变化的?
它们的变化有什么规律?
相对应的总价和米数的比各是多少?比值是多少?比较这些比值的大小,相等吗?这个比值实际上就是花布的什么?
(4)小结。
花布的米和总价也是两种相关联的量,总价是随着米数的变化而变化的。米数扩大,总价也随着扩大;米数缩小,总价随着缩小。它们扩大,缩小的规律是:总价和米数的比的比值是一定的。
3、概括正比例的意义及关系式。
(1)比较上面的例1和例2,它们有什么共同点?
(2)判断成正比例量的方法:是什么?
(3)师:例1中路随着时间的变化而变化,它们的比的比值,也就是速度保持一定。年以,路程和时间是成正比例的量。大家想一想:在例2中,有哪两种相关联的量?它们是不是成正比例的量?为什么?
(4)概括关系式:
Y/X=K(一定)
4、教学例3。
出示例3
师:大家能不能根据上面的判断成正比例量的方法说说?指名口述、师帮助纠正。关系式是:总重量/袋数=每袋面粉重量(一定)
5、小结。
判断两种相关联的量是否成正比例,关键是看这两种相关联的量中相对应的两个数的比值是否一定,如果比值一定,那么这两种量就是成正比例的量。
四、巩固练习
第13页做一做
五、总结。
1、什么叫成正比例的量?
2、怎样判断两种量是成正比例的量?
六、作业:完成练习六第1-3题。
六年级数学下册第三单元《比例》练习 篇15
设计说明
本节课主要学习用比例知识解决实际问题。遵循“学会应用才能真正实现数学的价值”的理念,为学生创设轻松的学习氛围,让学生亲身去体会、观察、发现、探索。因此,本节课在教学设计上关注以下两个方面:
1.合理复习,有效铺垫。
温故而知新,用比例知识解决正、反比例问题的关键是先让学生能够正确找出两种相关联的量,然后判断它们成什么比例,最后利用正、反比例的意义列出方程。所以利用比例知识解决相关问题之前,先给出一些数量关系,让学生判断成什么比例,不但很好地复习了旧知,也用正、反比例知识解决了教学难点,为学生探究用比例知识解决问题提供了有力的保障。
2.巧妙引导,拓展思维。
《数学课程标准》指出:教师是学生学习的引导者。因为在学习这部分知识之前学生已经会解决生活中的有关归一、归总的实际问题,所以教学教材例题时,先引导学生用学过的方法解决问题,再引导学生用比例知识解决问题,这样既有利于学生理解、掌握用比例知识解决问题的方法,又有利于学生创新思维能力的培养,确保数学活动的有效性。
课前准备
教师准备 PPT课件
教学过程
⊙复习铺垫,引入新课
1.复习铺垫。
课件出示:(1)一辆汽车行驶的速度不变,行驶的时间和路程。
(2)一辆汽车从甲地开往乙地,行驶的速度和时间。
提出问题:①每道题中各有哪三种量?②其中哪种量是不变的?③哪两种量是相关联的?相关联的量成什么比例?(生讨论后解答)
2.引入新课。
生产、生活中的一些实际问题也可以应用比例知识来解决。今天,我们就来学习用正、反比例知识解决问题。(板书:用比例解决问题)
⊙合作交流,探究新知
1.学习例5,用正比例知识解决问题。
(1)课件出示教材61页例5主题图。
(2)学生读题思考,并汇报题中的已知条件和所求问题。
预设
生1:已知条件是张大妈家上个月用了8 t水,水费是28元。李奶奶家用了10 t水。
生2:所求问题是李奶奶家上个月的水费是多少钱。
(3)指名完整叙述题意。
根据学生的回答,课件出示例5:张大妈家上个月用了8 t水,水费是28元,李奶奶家用了10 t水。李奶奶家上个月的水费是多少钱?
(4)讨论、交流。
师:例5的问题可以用什么方法解决?
预设
生1:可以用算术方法解决。先用28÷8求出每吨水的价钱,再求出10 t水的价钱,列式为28÷8×10。
生2:可以用比例方法解决。设李奶奶家上个月的'水费是x元,用正比例知识解答。
师:为什么可以用正比例知识解答?
预设
生:因为用水的吨数和水费是两种相关联的量,且水费和用水的吨数的比值(也就是每吨水的价钱)是一定的,所以可以用正比例知识解答。
师:如何运用正比例关系列方程解答?
预设
生:解:设李奶奶家上个月的水费是x元。
=
8x=28×10
x=
x=35
答:李奶奶家上个月的水费是35元。
(5)拓展练习。
王大爷家上个月的水费是42元,上个月用了多少吨水?
(学生独立完成后汇报交流)
六年级数学下册第三单元《比例》练习 篇16
设计模式:“激趣―自主―创新实践”教学模式
教学目标:
1、知识目标:
通过本节课的学习,使学生了解人体的基本结构;身体各部分之间的比例;成年男女体形的差异。
2、能力目标:
通过本节课的学习,培养学生的探索、实践、创新能力;通过临摹、写生锻炼学生的人物速写能力。
3、态度情感价值观:
通过本节课的学习,提高学生的学习美术的兴趣,通过了解人体的完美,感化学生的情感世界,陶冶情操,让学生在完美中感受现实世界。
教学分析
1、教材地位与作用:
本节课为绘画课,根据新课程标准的要求,美术课不在仅仅传授知识,更重要是用艺术美净化灵魂和审美、美术感受及绘画能力的培养。本节课主要以测量实验、临摹写生为主,教材在本节课中起辅助作用。
2、重点和难点:
重点:解人体的基本结构;身体各部分之间的比例;成年男女体形的差异。
锻炼学生的人物速写能力。
难点:人物速写技法、技巧及速写线条的把握。
3、教学方法与手段:
以学生为主体,通过以多媒体演示、欣赏、测量、比较、临摹、写生与教师示范相结合,创造性参与活动的综合形式结合教学,指导学生在参与测量实验活动中获得人体结构与比例的知识,从欣赏中获得美的感受,从临摹写生中锻炼学生的人物速写能力,体现以学生的主体和教师的主导作用。教学用具:直尺、挂图、铅笔、橡皮教学过程:
教学环节教师活动学生活动设计意图
一、创设问题情境、引发学生思考激发兴趣
1、教师出示脑筋急转弯小题目:“有一种动物早晨四条腿,中午两条腿,晚上三条腿。”
2、由学生的回答“人”导入新课,“我们这节课就来研究一下有关人的问题。”
“人是社会活动的主体,也是美术作品的`主要表现对象。”
3、通过多媒体出示多幅中外有关人体的绘画作品,教师并简单讲解。
4、教师引导“这些作品中的人物都十分完美,那么人体为什么这么完美呢?”
5、“人体之所以完美是因为人体的各部分都是按照和谐对称和严格的结构、比例关系组合而成的”师生问好
二、讲授新课自主探究、互动交流
1、出示人体图片,让学生观察并分组讨论人体可以分为几部分?2、教师对学生的答案进行点评,总结出正确的人体结构。
人体的基本结构:
头部、躯干、上肢、下肢(出示人体结构图示)
学生观察、讨论并总结答案。
观看人体结构图示
通过观察、讨论、总结培养学生选择信息和自主学习的方法。
二、讲授新课自主探究、互动交流
3、教师口述问题:
(1)、我们在测量课本的长宽时用什么做单位?
(2)、在测量教室的长宽时用什么做单位?
(3)、那么在测量人体的比例时用什么做单位呢?以人头的高为一个单位(让学生猜测,教师引导。)
4、教师出示测量题目:
(1)、人站着的身高有几个头高?
(2)、人的躯干有几个头高?
(3)、人的上肢下肢有几个头长?(学生分组测量,记录)5、教师与学生共同分析测量结果,总结出正确结果。
(1)、人站着的身高有7.5个头高。
(2)、人的躯干有2.5个头高。
(3)、人的上肢3个头长,下肢有4个头高。通过实际测量、记录锻炼学生的实践操作能力,让学生在实践中获得知识
6、出示两幅成年男女的人体图片,让学生观察两者的体形的差异?学生观察图片,讨论两者的体形的不同之处。(教师提示可以从颈、肩、腰、臀观察。
7、教师与学生共同分析观察讨论结果,总结出正确结果。
(1)、成年男人体腰粗颈粗,肩宽臀窄,躯干呈倒梯形。
(2)、成年女人体腰细颈细,肩窄臀宽,躯干呈正梯形。学生回答
三、创作展示、拓展升华
1、上面我们学习了人体的结构、比例、体形,对于人体有了较深的了解,下面我们就来用绘画来描绘一下人物,通常一般用速写来表现。(出示人物速写图片)
2、教师讲解人物速写的绘画步骤:
(1)、大致确定人体的基本结构与比例关系。
(2)、以较轻的笔触,简略勾出人物的大体结构和基本形体。学生欣赏图片,教师讲解。通过欣赏提高学生的学习兴趣
(3)、进一步深入描绘,直自完成。
3、教师引导学生临摹课文插图
4、教师示范并讲解速写的有关技法技巧
5、教师指导学生分组进行人物速写练习(写生)学生进行速写练习四、巩固新知、激励点评
1、教师对学生作品进行点评
2、巩固新知:
(1)、人体可以分哪些基本结构?
(2)、身体各部分之间的比例?
(3)、说一说成年男女体形的差异?学生针对教师点评对作品修改
五、作业运用所学的人体结构和比例的知识,用铅笔为同学画一幅全身立姿像。