欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 第一单元《百分数的应用》教材分析(通用16篇)

第一单元《百分数的应用》教材分析(通用16篇)

网友 分享 时间: 加入收藏 我要投稿 点赞

第一单元《百分数的应用》教材分析(通用16篇)

第一单元《百分数的应用》教材分析 篇1

  在六年级(上册)“认识百分数”里,教学了百分数的意义,并联系后项是100的比,体验了百分数又叫做百分比或百分率;教学了百分数与分数、小数的互化,尤其是百分数与小数的相互改写,为应用百分数解决实际问题做了必要的准备;还教学了简单的求一个数是另一个数的百分之几的问题,初步应用了百分数。在此基础上,本单元继续教学百分数的应用,包括四个内容,依次是求一个数比另一个数多(或少)百分之几的实际问题,根据已知的税率求应缴纳的税款以及根据已知的利率求应得的利息,与折扣有关的实际问题,较复杂的已知一个数的百分之几是多少,求这个数的实际问题。编排了六道例题、四个练习,把全单元的内容分成四段教学,最后还有单元的整理与练习。 1.以现实问题中百分数的意义为突破口,通过推理分析数量关系,探索算法。解答例1的关键是理解问题的具体含义,教材借助直观的线段图,让学生思考“实际造林比原计划多百分之几”应该怎样理解。明确这个问题是求实际造林面积超过原计划的公顷数相当于计划造林公顷数的百分之几,从而产生先算出实际造林比原计划多4公顷,再求4公顷是计划造林面积16公顷的百分之几这样的思路。或者先算出实际造林面积是原计划的125%,再得出实际造林比原计划多25%的结论。两条思路、两种算法都是把原计划造林公顷数看作单位“1”(即100%),在线段图上能清楚地看到,两种解法最终都是求实际造林比原计划多的部分是原计划的百分之几。练习一第1题利用已知的“是百分之几”求“增长百分之几”,或者利用已知的“增加百分之几”求“是百分之几”,通过百分数之间的相互转化,进一步理解“增加百分之几”的含义,还带出了“下降百分之几”这个概念。实际造林比原计划多百分之几与原计划造林比实际少百分之几是两个不同的问题,前者是实际造林比原计划多的公顷数与原计划造林公顷数相比,后者是原计划造林比实际造林少的公顷数与实际造林公顷数相比,解决两个问题的算式中,被除数的意义不同,除数也不同。教材编写“试一试”的目的就是要突出这些不同,要求教师在适当的时候组织学生将“试一试”和例题的计算结果进行比较,研究为什么得数不同,进一步理解这两个问题的含义与数量关系。练习一第5题里,第(1)、(2)题的条件相同,问题不同,第(2)、(3)题的条件不同,问题也不同。通过解题与比较,能使学生更正确地理解“是百分之几”与“高百分之几”的含义。第7题分别求巧克力的单价比奶糖、水果糖和酥糖贵百分之几,要依次把巧克力比奶糖、水果糖、酥糖贵的单价与奶糖、水果糖、酥糖的单价相比,反复体验求一个数比另一个数多百分之几的解题思路与方法。第8题以表格形式呈现求百分数的问题,首次把百分数应用于统计表中。2.把求一个数的几分之几是多少的经验,向求一个数的百分之几是多少迁移。例2结合纳税教学求一个数的百分之几是多少的问题,先找到数学问题“60万元的5%是多少”,然后把求一个数的几分之几是多少的经验迁移过来,得到“求一个数的百分之几是多少,也用乘法计算”,于是列出算式60×5%。在上面的过程中,关键在于寻找数学问题,只要理解了缴纳的营业税是60万元的5%,学生就会想到用乘法计算,把求一个数的百分之几纳入原有的经验系统,从而发展认知结构。在计算60×5%时,可以把5%化成5/100,也可以化成0.05,前一种算法又一次体验了求一个数的百分之几与求一个数的几分之几是一致的,用乘法计算是合理的。在“练一练”里,由于6.2×5/100的计算比6.2×0.05麻烦,所以计算含有百分数的乘法一般把百分数化成小数。练习二第1~4题是配合例2编排的,要引导学生抓住“求什么的百分之几是多少”进行思考。如,第1题是求门票收入的3%,因此接待游客18万人次是多余的信息。又如,第4题是求月收入超过1600元的部分的百分之几是多少,因此要先算出应纳税部分的元数,并找到相应的税率。例3计算利息,应用求一个数的百分之几的方法解决稍复杂的实际问题。由于多数学生缺少这方面的生活经验,因此教材在底注中解释了本金、利息、利率的含义,并给出了计算利息的方法:利息=本金×利率×时间。要结合例题里的表格,让学生知道利息和本金、年利率、存期有关,一般情况下,本金越多,存期越长,年利率越高,到期后获得的利息就多。还要让学生知道,存期一年,到期可得的利息是本金的2.25%;存期二年,每年的利息是本金的2.70%……这样,学生就能理解计算利息公式里的数量关系。“试一试”利用例3求得的应得利息,继续计算缴纳利息税以后的实得利息。要让学生懂得实得利息是应得利息扣除缴纳的利息税以后剩下的利息,明白为什么先算出利息税是多少元的道理。从例题到“试一试”的全过程,就是我国现行的银行存款实得利息的计算方法:先根据本金、存期和利率算出应得利息,再扣除缴纳的利息税得到实得利息。学生完成“练一练”和练习二第5~7题就有思路了。要注意的是,计算实得利息的步骤比较多,“练一练”和第6、7题都采用连续提问的形式,适当降低了解题时的思维难度。3.列方程解决已知一个数的百分之几是多少,求这个数的实际问题。例4教学与折扣有关的问题,也是百分数的实际应用。教材先对“打折”作了具体的解释,让学生明白几折就是百分之几十,知道八折就是80%,从而把打折的实际问题与百分数的应用联系起来。“原价和实际售价有什么关系”是这道例题的教学重点,要从“原价打八折出售”得出“原价×80%=实际售价”。这个数量关系能起两点作用,一是进一步理解打折扣的含义:图书按八折出售,实际售价只是原价的80%。二是形成求《趣味数学》原价的解题思路,在数量关系式里已知积与一个因数,求另一个因数,可以列方程解答。本册教材里,已知一个数的百分之几是多少,求这个数的问题都列方程解答,充分利用百分数的意义,加强对百分数乘法的理解,避免人为地把实际问题分类型,体现了各种百分数问题的内在联系。求出《趣味数学》的原价15元以后,对学生提出检验的要求,而且采用了两种检验方法。依据折扣的含义,既可以用实际售价除以原价,看是不是打了八折;也可以看原价的80%是不是实际售价12元。这样安排,不仅检验了原价15元是正确的,还多角度表现了原价、实际售价、折扣三者的关系,在进一步理解折扣的同时,沟通了三种简单的百分数问题的联系。“练一练”求《成语故事》的原价,也要求检验,让学生独立经历与例4同样的学习过程,再次体会问题中的数量关系。练习三的编排大致分成两段,第1~4题是第一段,在理解折扣含义的基础上正确应用数量关系。第1、2题分别求打折后的实际售价与打折前的原价,都可以根据“原价×折扣=实际售价”来解答。第4题求折扣,教材先让学生回答第3题,把按原价的百分之几出售改说成打几折出售,体会求“几折”只要求“百分之几”,为第4题作了铺垫。第5~9题是第二段,仍然以求实际售价或求原价为主要内容,灵活应用数量关系。第5题分别求实际售价与实际比原来便宜的元数,这里有简单问题与稍复杂问题的比较。第6题分别求实际售价与原价,是两种折扣问题的比较。第7、8题让购物问题更复杂一些,有利于学生在变化的问题情境中把握基本的数量关系。例5和例6是较复杂的已知一个数的百分之几是多少,求这个数的问题,都列方程解答。两道例题分别把相并关系和相差关系作为列方程的相等关系,虽然相并与相差是学生早就认识的数量关系,但在复杂的百分数情境里不容易看到。为此,例题利用线段图给予直观帮助,让学生在例5的线段图右边的括号里填“36”,体会男生人数与女生人数合起来是美术组的总人数。例6在线段图上突出十月份比九月份节约用水的那一段,引导学生注意两个月用水量之间的相差关系。教材完整地写出两道题的等量关系,让学生感受等量关系式右边美术组的总人数、十月份用水的吨数都已知,在这样的情况下,列方程是解题的有效方法。虽然有了等量关系,但列方程还会遇到一个问题,即为什么设男生人数为x,设九月份的用水量为x。要引导学生抓住题目中已知的那个百分数,分析它的意义,体会这样的设句是合理的,不仅用x表示了单位“1”的数量,还很容易用含有字母的式子表示出女生人数,表示出十月份比九月份节约用水的吨数。两道例题列出的方程里都有两个“x”,还含有百分数,解方程时要先化简方程的左边,再应用等式的性质。例题呈现了解方程的过程,并在练习四里安排三道解方程的习题,提醒教师要帮助学生正确地解方程。检验不是把未知数的值代入方程,而是要检验得数是否符合实际问题里的数量关系。具体地说,例5要检验男、女生的人数之和是不是36,还要检验女生人数是不是男生的80%。例6要检验十月份用水的吨数是不是比九月份节约20%,或者检验九月份的用水量节约20%,是不是440立方米。只有符合实际问题的得数才是正确答案。“练一练”要先说数量关系再解答,突出寻找等量关系是解答这些题的关键,也是指向解题难点的基础训练。要引导学生从分析题目里已知的那个百分数开始,有条理地思考。如第11页“练一练”,种蓖麻的棵数是向日葵的75%,向日葵的棵数是单位“1”的量,蓖麻的棵数是单位“1”的75%,它们一共有147棵,等量关系就是“蓖麻的棵数+向日葵的棵数=147”;向日葵比蓖麻多21棵,等量关系就是“向日葵的棵数-蓖麻的棵数=21”。再如第12页“练一练”,美术组的人数比舞蹈组多20%,舞蹈组的人数是单位“1”的量,美术组比舞蹈组多的人数是单位“1”的20%,等量关系是“舞蹈组的人数+美术组比舞蹈组多的人数=美术组的人数”。解答练习四里的实际问题,也应经常让学生说说数量关系。练习四第1~4题配合例5编排,第4题第(1)题曾经在六年级(上册)教过,那时也是列方程解答的,从第(1)题到第(2)题带出了稍复杂的分数问题。整数、分数、百分数都能表示两个数量间的倍数关系,第4题把貌似不同的问题组织在一起,凸现这些问题在本质上的联系。第5~9题是配合例6编排的,在第9题里把简单的百分数问题和较复杂的百分数问题编排在一起,可以适当进行比较。第10~16题是一堂练习课的内容,第11~13题是百分数的问题,进一步熟悉两道例题的解题思路,第14~16题是三道已知一个数的几分之几,求这个数的问题,促使例题的思考方法水平迁移。在六年级(上册)只教学稍复杂的分数乘法问题,另一些分数实际问题则安排在这里教学。教学例4、例5、例6以及练习里的内容,要更新观念,改变习惯了的教学方法。首先是不要求学生识别分数乘法与分数除法两类不同的问题,尤其不要机械套用已知单位“1”用乘法,单位“1”未知用除法这些所谓的规律。过去这样教的解题效果虽好,但严重制约了学生的思维,把分析数量关系的过程变成了依据个别词语的简单判断。改进教法要加强对分数、百分数意义的理解,充分利用求一个数的几分之几是多少这个数量关系,合理选择列算式还是列方程解题。其次,不必进行有关分率与百分率的联想训练。如从用去25%想到还剩(1-25%);从第一天看了全书的1/5,第二天看了全书的1/6想到两天看了全书的1/5+1/6,这些联想是为列除法算式服务的。要引导学生充分挖掘和利用实际问题里的相并、相差等最基本的数量关系,作为列方程或列算式的依据,让小学与初中的教学相衔接,为学生的后继学习打下良好的基础。

第一单元《百分数的应用》教材分析 篇2

  教学目标:

  1.使学生初步掌握“求一个数比另一个数多(或少)百分之几”的应用题的分析方法,并能正确解答此类应用题.

  2.进一步提高分析、比较、解答应用题的能力,培养认真审题的好习惯.

  教学重点:

  掌握“求一个数比另一个数多(或少)百分之几”的应用题的分析方法,并能够正确列式解答.

  教学难点:

  掌握“求一个数比另一个数多(或少)百分之几”的应用题的分析方法,并能够正确列式解答.

  教学过程:

  一、复习准备

  (一)求一个数是另一个数的百分之几用什么方法?解答这类应用题的关键是什么?

  (二)口答,只列式不计算.

  1.5是4的百分之几?4是5的百分之几?

  2.甲数是50,乙数是40,甲数比乙数多多少?甲数比乙数多的是乙数的百分之几?

  3.甲数是48,乙数是64,甲数比乙数少多少?甲数比乙数少的是甲数的百分之几?

  (三)应用题

  盒子中有45立方厘米的水,结成冰后,冰的体积约为50立方厘米。

  冰的体积是原来水的体积的百分之几?

  (四)引入新课

  如果把、问题改为:冰的体积比原来水的体积增加了百分之几?该怎样解答呢?今天我们继续学习百分数应用题.

  二、新授教学

  (一)教学例题

  例.盒子中有45立方厘米的水,结成冰后,冰的体积约为50立方厘米。

  冰的体积比原来水的体积增加了百分之几?

  1.读题,理解题意.

  2.比较:例题与复习题有什么异同?

  3.讨论:“冰的体积比原来水的体积增加了百分之几?”什么意思?(画图理解)

  教师板书:多出来的部分占原计划的百分之几.

  4.列式计算

  (50-45)÷45 =5÷45 ≈0.111 =11、1%

  5.思考:这道题还有其他解法吗?

  50÷45-1 ≈111、1-1 =11、1%

  提问:为什么要减去1?

  (二)反馈

  1.把例题中的问题改成“水比冰体积少百分之几?”该怎样解答?

  思考:这道题与例题有什么相同的地方?有什么不同的地方?

  2.一个乡去年原计划造林12公顷,实际造林比原计划多2公顷,实际造林比原计划造林多百分之几?3.一个乡去年原计划造林12公顷,实际造林比原计划多2公顷,实际造林比原计划造林少百分之几?

  三、巩固练习

  (一)分析下面每个题的含义,然后列出文字表达式.

  1.今年的产量比去年的产量增加了百分之几?

  2.实际用电比计划节约了百分之几?

  3.十月份的利润比九月份的利润超过了百分之几?

  4.1999年的电视机价格比1998年降低了百分之几?

  5.现在生产一个零件的时间比原来缩短了百分之几?

  6.十一月份比十二月份超额完成了百分之几?

  (二)只列式不计算.

  1.某校有男生500人,女生450人,男生比女生多百分之几?

  2.某校有男生500人,女生450人,女生比男生少百分之几?

  3.一种机器零件,成本从2.4元降低到0.8元,成本降低了百分之几?

  4.一种机器零件,成本从2.4元降低了0.8元,成本降低了百分之几?

  5.某工厂计划制造拖拉机550台,比原计划超额完成了50台,超额了百分之几?

  (三)思考

  男生比女生多20%,女生就比男生少.

  四、课堂小结

  通过今天的学习,你有哪些收获?

  五、课后作业

  1.我国第一大岛中国台湾岛面积约35760平方千米,第二大岛海南岛面积约是32200平方千米.中国台湾岛的面积比海南岛大百分之几?(百分号前面的数保留一位小数)

  2.工程队原计划一周修路24千米,实际修了28千米.实际修的占原计划的百分之几?实际比原计划多修百分之几?

第一单元《百分数的应用》教材分析 篇3

  知识目标:

  使学生进一步掌握用所学知识解答有关百分数问题的方法。

  能力目标:进一步提高学生解答百分数应用题的能力。

  情感目标:

  用所学知识解决生活中的实际问题,使学生爱学习,愿意合作。

  教学重点、难点:

  进一步学习用方程和用算术方法解决百分数除法应用题的方法。

  教学策略:

  引导学生根据分数乘法的意义找出等量关系式,再根据乘除法的`关系列出除法算式,或者直接根据关系式列方程解答问题。

  教学准备:写有试题的小黑板。

  教学过程:

  一、说一说,你掌握了有关百分数的那些知识。用方程解答分数除法问题的步骤是怎样的?

  二、练习

  1、复习百分数、小树、分数间的互化方法。在填写表格中的空格,对学困生进行辅导。

  2、做第2题,用颜色涂出62.5%要指导学生把百分数化成分数再涂。

  3、做第3题,要学生说出命中率的含义,再求命中率。

  4、做第5题,先提问:百分号前面保留一位小数,应除到哪一位?并指导学困生练习除。

  5、做第6题,先让学生估计一天中睡眠时间有几小时,在校时间有几小时,一天共有几小时。再实际算一算。

  三、。

  谈一谈自己的收获,说说自己有什么新的发现。

  板书设计:

  练习六

  把百分数化成小数:62.5%=625/1000=5/8

  命中率:命中的次数占射击总次数的百分之几。

第一单元《百分数的应用》教材分析 篇4

  百分数这个内容在五年级的下册就已经接触到了,那时候只是初步的认识了百分数以及百分数的一些基本的运算。但是在那时候,就已经反映出学生对于百分数这个内容的掌握就是已经不好了。

  本课的教学设计,是在新课程标准理念指导下,根据本班学生实际情况进行设计的。从实施情况来看,整堂课学生情绪高涨、兴趣盎然。在教学中,教师一改往日应用题教学的枯燥、抽象之面貌,而是借用学生已有的知识经验和生活实际,有效地理解了百分数应用题的数量关系和实用价值。

  1、改变应用题的表述形式,丰富信息的呈现方式。

  根据小学生的认知特点,我们在教学过程中,出示例题、习题时,呈现形式应力求多样、活泼,让学生多种感官一起参与,以吸引学生的注意力,培养对数学的兴趣。本课的教学中,我大胆地改变了教材中的知识例题,重组和创设了“实验活动”这样一个情境,从而引入“求一个数是另一个数的百分之几”的应用题,即切合学生的生活实际,又让学生自然而然地产生了学习的实际需要,激发了学生学习的兴趣。并更好地为下一环节的自主探索、主动发展作好充分的准备。

  2、突出数学应用价值,培养学生的应用意识和创新能力

  《数学课程标准》(实验稿)明确指出,要让学生能够“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。”本课的设计充分体现了这一理念,例题从学生的游戏中来,让学生感受到数学与生活的密切联系,通过自己的探究,运用数学的思维方式解决问题,又能运用掌握的知识去研究解决生活的其它数学问题,,培养了学生的应用意识。同时,例题的教学注重让学生自主学习,合作探究,充分发挥了学生的学习主动性,也培养了学生的创新能力。

  3、创设民主氛围,鼓励解决问题策略的多样化。

  民主、自由、开放的学习氛围是学生主动参与、敢于发表自己独特见解的前提条件。在本课的“请你选择感兴趣的百分数尝试编一个百分数应用题”中,学生卸下了书本应用题、教师思维的束缚,大胆设想、讨论,从实际效果来看,不同的学生就有不同的思考方式和解决方法,使学生的个性学习发挥的淋漓尽致。更培养了学生自己收集已有知识,解决实际问题的能力。因此,我觉得在教学中应对学生多一份“放手”的信任,少一点“关爱”的指导,大胆地让学生在学习的海浪中自由搏击,让学生自己寻找问题解决的策略、学习的方法,有头脑、有个性、有能力的学生才能应运而生。

第一单元《百分数的应用》教材分析 篇5

  [学习目标]

  1、掌握分数、百分数应用题的结构特点和解题方法,会解答一至三步计算的分数、百分数应用题,会有条理地说明它们的思路,会按照题目的具体情况选择简便的解答方法,能应用所学的知识解决生活中的一些简单的实际问题,其他教案-分数、百分数应用题。

  2、知道百分数在实际中的应用,并会解答有关的实际问题。

  [重点、难点]

  1、正确判断作为单位“1”的量是学习的重点。

  2、百分数的应用是学习的重点。

  3、在发芽率的公式中为什么要乘以100%是学习的难点。

  4、在工程问题中,用“1”表示工作总量,用单位时间内完成工作总量的几分之几表示工作效率,是学习的难点。

  5、有条理地说明解题思路是学习的难点。

  第一课时:10、30

  一、复习分数乘法的意义

  一个数乘以分数就是求这个数的几分之几。

  二、要解决的问题

  1、求一个数的几分之几(百分之几)

  2、已知一个数的几分之几,求这个数。

  如:(1)15的 是多少?

  (2)已知一个数的 是12,这个数是多少?

  三、应用

  例1、一条公路长2400米,已修了全长的 ,还剩下多少米?

  分析:根据题意,已修了全长的 ,是把全长(2400米)看作“单位1”,未修的路程是全长的(1- ),要求还剩下多少米就是求2400米的(1- )是多少。

  答:还剩下960米。

  例2、修路队要修一条公路,已修了1440米,正好占全长的 ,还要修多少米?

  分析:已修的正好占全长的 ,是把全长看作“单位1”,已修的1440米是 对应的数量,可以求出全长。已修了占全长的 ,那么未修的占全长的(1- ),要求出还要修多少米才完成任务,就是求全长的(1- )是多少?

  答:还要修960米才完成任务。

  练习:分课时总复习

  P98 Ex1:5、6、7、8

  P98 Ex2、Ex4

  作业:P99 Ex6:1、2

第一单元《百分数的应用》教材分析 篇6

  六下第一单元《百分数的应用》教学反思

  本单元教学是在六年级上学期学习了认识百分数这一单元的基础上开展的,共分为四个部分,分别是纳税、利息、折扣以及稍复杂的百分数应用题。根据自己对教材的理解和把握以及教学的情况来看,我觉得在本单元的教学要注重“三抓”。

  一、抓联系

  因为本单元的例1是求一个量比另一个量多(少)百分之几的实际问题,而在六上已经学习了有关这种类型的几分之几的实际问题,故教师在教学中要紧抓这两者之间的联系,从而让学生明确,解决这类的问题解题思路是一致的,只是结果的呈现形式不一样。例2和例5及例6的教学基本思路和六上分数应用题的基本思路也是一致的,教师主要是注重引导学生说出思考问题的步骤及思路。

  二、抓对比和变式

  教学中,教师在练习训练中,不能仅仅依靠书中提供的练习,还要加强习题之间的对比,在对比练习中,才能让学生进一步区分不同类型题目的解题思路和方法。教师可以安排两种类型的对比练习,第一种是基本条件一样,数的形式不一样的题组练习,主要是明确虽然数的形式不一致,但解题思路是一样的。第二种是基本条件一样,关键句中单位“1”是已知和未知的题组练习,主要是明确当单位“1”的量在已知与未知的变化过程中,解题方法是怎样的。

  教材中,给出的练习往往都是基本的练习,基本上两步就能求出所求的问题,教师在练习中,还要增加一些变式的练习,可以是三至四步以上的,可以结合教材中现有的题目,把所求的问题进行变化,从而让学生明白具体的解题思路。

  三、抓重点习题

  第一次教六年级的老师往往在教学第6页第4题时会感到很困难,甚至有的时候连老师也对这一题不是很理解,因此在教学中,教师要充分理解学生的困难,首先应该是教师举例在黑板上独立分析这道题的解题思路,学生学习的困难有两点,第一是学生不知道这道题要分开来计算税款,第二是学生不理解超过500元——2000元的部分为什么是1500元。教师介于学生这两方面的困难,在第二点上要教细,教师可以结合条形的统计图来帮助学生理解,从0元开始往上分段,从分段过程中明确各段的钱数与税率之间的关系。在教学结束后,教师可以举几个实例让学生独立计算,学生练习中教师要及时把握学生在计算中的困难,然后结合困难,在班级中有针对性地进行讲解,讲解后让学生再练习,反复几次,学生对此题的理解会更加到位,做题也会更加熟练。

  六下第一单元《百分数的应用》教后反思

  六下第一单元《百分数的应用》内容已经教完,虽然在课前已经对整个单元的教材分析、课后练习、学生可能起点都进行了较为系统的研究,但是在课堂教学中,总是有这样或那样的遗憾,也是在这样的反思后,对整个教学,才有了更加深刻系统的理解。

  一个沟通

  《百分数的应用》虽然作为独立的一个单元,但它与上学期的内容有非常密切的联系。在六年级(上册)“认识百分数”里,已经教学了百分数的意义,并联系后项是100的比,体验了百分数又叫做百分比或百分率;教学了百分数与分数、小数的互化,尤其是百分数与小数的相互改写,也为应用百分数解决实际问题做了必要的准备;还教学了简单的求一个数是另一个数的百分之几的问题,初步应用了百分数。同时,上学期还重点研究了分数问题,对分率句的分析,单位“1”的寻找,学生都已经具备了相当的能力,所以许多东西,我们都没有必要让学生从头去学,从新开始。如,在学习“较复杂的百分数问题”时,例题出示放下去让学生思考时,方法就是多种多样。由于80%,学生对此百分数非常敏感,分率句“女生人数是男生的80%”,有的同学把它转化成“女生人数是男生的4/5”,变成已经学过的分数问题;有的同学把它转化成“女生与男生的人数之比是4:5”,变成学过的比的问题;而直接运用百分数的方法来解决的反而相对较少,更别说用数量关系式或线段图的方法来帮助自己理清关系了。收不到这样的资源,课堂如何继续?其实,想想这也是非常正常的。“80%”这个百分数转化成分数或比,非常简单,而转化后的问题,对学生来说没有困难,学生自然选择这样的方法,这也反映出平时我们在教学时对“转化”这种数学思想有所渗透,部分学生已经有将没有学过的内容转化成已经学过的知识解决问题的意识。其实,百分数问题的解题思路和分数问题完全是相同的,所以,只要做好其中的沟通,反而是帮助学生理解百分数问题。适时的,我又将80%这个数据换成了72%,学生对这个百分数的敏感度明显降低,那么将这样的百分数一步一步转化成最简分数计算反而麻烦,所以百分数问题也有其特殊性,每次都转化成分数或比来解决,并不是一般方法。

  两种方法

  两种方法是画线段图和列数量关系式。其实,这是两种非常有效实用的方法,可以帮助学生理清关系。但是,我始终认为,这只是帮助学生理解题意的方法,如果自己理解能力足够的话,在脑子中就能画出线段图和列出数量关系式,完全没有必要把它们写出来。它们的作用只是帮助学生在理解上存在问题时给与直观的提示。从学生的反应中也可以发现:许多学生是在读题后直接列出算式解答的,再去画线段图和数量关系式反而是多此一举,学生根本没有这样的需求。但万一碰到了不会解决的难题怎么办,会画线段图和会列数量关系式这种基本的能力怎样进行检测呢?我想了几个办法。

  1.说明理由

  会做也要会说。题目解决的过程,怎样跟同桌交流,怎样说得简洁明了?线段图和数量关系就是很好的理由。

  2.改正错题

  为什么会错?就是因为关系没有搞清楚。怎样最清楚?把线段图画出来,数量关系式写出来,改正错题的时候一起拿上来。

  3.看图说意

  考的就是你看得懂图吗?数量关系明确吗?

  这样来操作,学生有了需求,两种方法也更有价值。

  三个类型

  1.三个一般

  《百分数的应用》中其实涉及了三种类型。在教学的过程中要帮助学生在不同中找相同,凸显题目本质特征,初步形成“类”意识。在整理与练习中,要帮助学生梳理各种类型,沟通联系。这也要求老师要有意识的学会整理,才能帮助学生形成知识网络。

  第一类:求一个数是另一个数的百分之几。(求百分数)

  b        a         c%        b÷a=c%

  第二类:求一个数的百分之几是多少。(单位“1”已知)

  a        c%         b          ac%=b

  第三类:已知一个数的百分之几是多少,求这个数。(单位“1”未知)

  c%        b       a       b÷c%=a  或者用方程

  从这三类中,学生能较为明显地发现三种类型之间的联系,了解只要知道其中的两个量,就能求出第三个量。字母式子虽不是教材要求,但是直观明了,且对将来学生学习《代数》,做好前期的渗透。同时,也能从判断题目类型出发,来选择哪种解决的方法。所以,整理与练习中的解决问题,我都要求学生先对题目进行类别判断,然后在来解决,有效地降低了错误率。

  2.三个特殊

  本单元还涉及了三个日常生活中常见的百分数问题:纳税、利息、打折。许多学生遇到这样的问题,总是脱离开平时的思考方式。其实,这3个问题,只是上面三种类型的具体化,a、b、c%有了专有名词而已(如打折问题中的原价、折扣、现价等),老师又必要在整理时,帮助学生理清实质,进行“归一”。

第一单元《百分数的应用》教材分析 篇7

  教学目标:

  1.在具体情境中进一步理解“增加百分之几”或“减少百分之几”的意义,能计算出实际问题中“比一个数增加百分之几的数”或“比一个数减少百分之几的数”,提高运用数学解决实际问题的能力。

  2.能对现实生活中的有关数学信息作出合理的解释,并尝试解决生活中的一些简单的百分数问题;能试图探索出解答一般百分数应用题的方法,初步学会与他人合作。

  3.体验百分数与日常生活的密切联系,认识到许多实际中的问题可以借助数学方法来解决。提高学生学习数学的兴趣,发展学生质疑的能力,感悟数学知识的魅力。

  教学重点:

  理解“增加百分之几”和“减少百分之几”的意义。

  教学难点:

  掌握百分数应用题的特征及解答方法。

  教学过程:

  一、导入

  师:同学们,随着科学技术的发展,社会生产力不断进步,我国从1997年至今。铁路已经进行了多次大规模的提速,高速列车已经步入了人们的生活。今天我们一起来研究与列车提速有关的问题。

  【设计意图:从时事中提取数学信息,引导学生读活书、用活书,培养关注时事的兴趣。】

  二、过程

  师:说说从图中你了解到哪些信息?还想知道什么问题?(课件出示:教材第90页情境图)

  生:从图中知道,原来的列车每时行驶180千米,现在高速列车的速度比原来的列车提高了50%。我想知道,现在的高速列车每时行驶多少千米?

  师:“现在的高速列车每时行驶多少千米”,你是如何思考这个问题的?

  生1:现在高速列车的速度比原来的列车快多了。

  生2:我们首先要明白“现在高速列车的速度比原来的列车提高了50%”这句话的意思。

  师:你是怎样理解这句话的?

  生:我们可以画图表示现在的速度和原来的速度之间的关系,这样能帮助我们理解题意。

  师:好,那就自己画图,试试看,能明白这句话的意思吗?

  学生尝试画图,教师巡视了解情况,个别指导有困难的学生。

  师:谁来说说自己的理解?

  生1:很容易从图中看出,“现在高速列车的速度比原来的列车提高了50%”,意思是指提高的部分相当于原来的50%,是把原来的速度看作单位“1”,这样我们就可以先计算速度提高了多少千米,也就是求一个数的百分之几是多少,用乘法计算;然后计算现在高速列车的速度。

  生2:从图中我们能看出,提高的部分是原来的50%,也就是说现在高速列车的速度是原来列车速度的(1+50%),这样就把问题转化成了“求一个数的百分之几是多少”的问题,用乘法计算。

  师:说的都对。请同学们自己列式解决问题吧!

  学生尝试独立列式解答,教师巡视了解情况。

  组织学生交流汇报,重点说说想法:

  先求比原来每时多行驶了多少千米,180×50%+180=270(千米)。

  先求现在的速度是原来的百分之几,180×(1+50%)=270(千米)。

  对于解答正确的学生及时给予表扬和鼓励。

  师:从下面的信息中,选择两个信息,然后提出一个问题,并试着解决。跟小组同学交流一下。(课件出示:教材第91页“试一试”中的4条信息)

  学生自己选择信息提出问题并解答,然后交流各自的方法;教师巡视了解情况。

  选取不同情况的学生代表汇报交流,只要有道理就要给予肯定。

  师:经过练习之后,淘气发现无论解决的是什么问题,都可以用下面的图来表示烘干前后的关系,你同意淘气的看法吗?为什么?(课件出示:教材第91页线段图)

  组织学生讨论交流,达成一致意见,明确:烘干前的质量多,烘干后的质量少。

  【设计意图:在具体问题的解决过程中,通过寻找数量关系,使学生进一步体会画线段图是一种非常常见的、有效的方法。】

  三、总结

  让学生说说本节课的收获。

  【设计意图:调动学生的积极性,提高课堂的学习效率。】

  板书设计:

  百分数的应用(二)

  先求原来每时多行驶了多少千米

  180×50%+180

  先求现在的速度是原来的百分之几

  180×(1+50%)

  教学反思:

  能够与实际生活联系在一起,使学生切身体会到数学在实际生活中的运用,更好的激发出学生对数学的学习兴趣。每个学生是不同的个体,他们的思维方法可能千差万别,他们对教材也会有不同的理解。学生的这种不同理解,其实就是一种很好的课程资源。在新知教学过程中,学生在理解题意的基础上,先独立思考,后尝试解答,再合作研讨。提倡、发现学生的多种思维和不同解法。在这个过程中,学生的想法得到了充分的肯定和鼓励,同时也拓宽了其他学生的思路。

第一单元《百分数的应用》教材分析 篇8

  教学目标

  知识技能通过“做数学”,引导学生进一步理解和掌握百分数的意义和应用题的数量关系和解题方法,自主建构使知识系统化;能结合自学、交流、探索等活动准确理解生活中绿化率等概念。

  数学思考引导学生经历探索、发现、创造、交流等丰富多彩的数学活动过程,并在这一过程中培养学生收集、处理信息的能力,使学生体会到数学的价值。

  问题解决使学生学会从数学的角度认识世界、解释生活,逐步形成“数学地思维”的习惯。

  情感态度以“生活问题”为载体,引导学生体验学习数学的成功和愉悦,培养学生学习数学的积极情感。

  教学过程

  一、感悟情景,出示课题

  欣赏昆山的美景,解读教师的心情。(背景音乐:《我想有个家》2分钟)

  猜猜老师心里在想什么?板书:购房

  二、真情互动,同步梳理

  (1)购房要考虑哪些因素?

  环境、面积、楼层、房价等。

  (2)研究绿化率。

  生:交通、地段、绿化、保安……

  出示A、B、两个小区的占地面积及绿化面积。你帮老师选择哪个小区?

  生1:选择B小区,因为这个小区的绿化面积多。

  生2:应该选择A小区,因为A小区的绿化面积所占总面积的百分比大。

  学生交流,明白绿化面积是占地面积的百分之几也就是绿化率。

  出示绿化率的计算公式。

  学生计算A、B小区的绿化率,得54%、50%)

  师小结:都是求一个数是另一个数的百分之几。(板书)

  根据绿化率的意义,你还可以研究哪些问题?学生探究。

  出示C、D的绿化率,分别求绿化面积、占地面积。

  (3)分析房型面积。

  投影显示房型数据,理解使用面积所占的百分比。

  房型三室两厅两室两厅

  建筑面积10690

  使用面积所

  占的百分比72%76%

  学生帮老师出主意,谈方案。求使用面积是多少。

  师小结:都是求一个数的百分之几是多少。

  三、开放练习,整体回顾

  参观样板房(投影图片),计算房间的面积。

  出示:卧室A的面积比卧室B多25%

  卧室A的面积比客厅少20%

  客厅的面积是餐厅的300%

  师:你想知道哪个房间的面积?还要知道什么条件?

  告诉一个卧室的面积,小组自由设计问题,交流解题思路。

  比较使用面积和建筑面积。

  在《美梦成真》的钢琴曲中想象。

  四、点击生活,享受数学

  总结全课,指出百分数的广泛应用,板书完整课题。(购房中的百分数)

第一单元《百分数的应用》教材分析 篇9

  课堂教学目标:

  1.通过综合练习,进一步巩固用百分数知识解决实际问题的基本思考方法,提高学生综合运用知识解决问题的能力。

  2.通过探索和实践,让学生进一步体会百分数在实际生活中的广泛应用,感受百分数学习的意义和价值。

  3.通过评价与反思,激励学生学好数学的信心。

  教学重点:

  通过探索与实践,让学生在解决稍复杂的各类百分数实际问题的过程中,能合乎逻辑地进行分析和思考,能用自己的语言描述解题思路,能合理、自觉地选择解决问题的策略。

  教学准备:教师准备教学光盘及多媒体设备;课前组织学生收集父母身高和体重的数据以及作好第13题的调查活动。

  教学过程:

  一、谈话揭题。

  上节课,我们将第一单元的数学知识进行了整理。运用我们所学的这些有关百分数的知识还可以解决生活中很多稍复杂的实际问题。(板书课题)

  二、练习与应用

  1.完成第7题。

  (1)独立解答。

  (2)交流算法,重点分析数量关系。

  2.完成第8题。

  (1)理解题意,适当解释“合金”的意思。

  明确:一块黄铜的千克数由两部分组成,一是铜的,二是锌的千克数。

  (2)学生独立解答后交流解题思路,学生可以有不同的解法。

  3.完成第9题,学生解答后交流思考过程,教师及时评价。

  4.完成第10题。

  (1)理解题意,问:两个百分数分别是以什么为单位“1”?数量间有怎样的相等关系?要算这个月的城市维护建设税,需先求出什么?

  (2)学生解答。

  5.完成11题。

  (1)读题,重点理解“携带行李超过20千克的部分,每千克要按飞机票原价的1.5%购买行李票”这句话的意思。

  可先让学生独立思考,再讨论交流。

  明确两点:

  一、首先算出超过20千克的那部分重量;

  二、行李票的价格=飞机票原价x1.5%。

  (2)学生解答。

  三、探索与实践

  1.完成12题。

  (1)同桌间交流课前收集爸爸妈妈及自己的体重和身高。

  (2)根据公式算一算各自的标准体重。

  (3)根据公式算算实际体重是否属于正常体重。

  2.完成13题。

  (1)根据课前调查计算。

  (2)组织学生交流,说说通过计算谈谈自己的想法。

  3.思考题。

  引导分析:利用倒过来推想的策略

  先算出这件商品打折前的售价是:104x80%=130元

  再算出商品的成本价:x+30%x=130,求出x=104元

  作出判断。

  四、评价与反思

  通过这一单元的学习,请你对自己的学习情况做一评价与反思。

  学生就教材提供的内容进行评价,教师及时了解学生评价情况。

第一单元《百分数的应用》教材分析 篇10

  教学内容:

  教科书第1―2页及“做一做”中的题目,练习一的第1、2题。

  教学目的:

  使学生了解有关利息的初步知识,知道“本金”、“利息”、“利率”的含意,会利用利息的计算公式进行一些有关利息的简单计算。

  教具准备:

  将例题写在小黑板上,活期储蓄、定期储蓄的存款凭条和取款凭条。

  教学过程:

  一、导入

  教师提问:

  “如果你家中有一些暂时不用的钱,将怎么办?”让几个学生说一说,当有学生说要把暂时不用的钱存入银行时,接着提问:

  “为什么要把钱存入银行呢?”多让几个学生发表意见。

  教师肯定学生的回答,再指出:把暂时不用的钱存入银行有两个好处:一是国家可以把这些钱集中起来,用在建设上,所以说储蓄可以支援国家建设;二是参加储蓄的人用钱更加安全和有计划,还可以得到利息,所以说储蓄对个人也有好处。

  “你们知道利息是怎样计算的吗?”

  教师:今天我们就来学习一些有关利息的知识。

  板书课题:“利息”

  二、新课

  出示例题:小丽1998年1月1日把100元钱存入银行,存定期一年。到1999年1月1日,小丽不仅可以取回存入的100元,还可以得到银行多付给的5.67元,共105.67元。

  先请学生读题,然后教师再说明:题目中有“存定期一年”表示什么呢?一般来讲。储蓄主要分定期存款、活期存款、大额存款等方式。所谓活期存款是指储户可以随时提取的一种储蓄方式,定期存款是有一定期限的一种存款方式。现在银行的定期存款有三个月、六个月、一年、二年、三年、五年、八年的等等。小丽存的是“定期―年”,即小丽在银行存的100元在一般情况下要在银行存一年;如果有特殊情况也可以提前提取。

  教师:在银行储蓄要弄清三个概念:本金、利息和利率。小丽在银行存入100元,也就是说她的本金是100元。板书:“存入银行的钱叫做本金”

  存款到期时,小丽到银行取回105.67元,银行多付给小丽5.67元,这是100元定期一年的存款所得到的利息。板书:“取款时银行多付的钱叫做利息”

  这5.67元的利息是根据什么给小丽的呢?是银行的工作人员根据利率计算出来的。板书:“利率就是利息与本金的比值”这是由银行规定的。利率有按年计算的,也有按月计算的。小丽存的是定期一年的存款,年利率是5.67%,也就是说如果存100元,在银行存一年可得100元的5.67%的利息,即5.67元的利息,再加上本金100元共105.67元。

  根据国家经济的发展变化,银行存款的利率有时会有所调整。1997年10月中国工商银行公布的定期整存整取一年期的年利率是5.67%,二年期的年利率是5.94%.三年期的年利率是6.21%。五年期的年利率是6.66%。

  按照上面的利率,如果小丽存300元钱定期存款二年,到期时她应得利息多少元?提问:

  “二年期的定期整存整取的年利率是5.94%是什么意思?”(到期取款时每100元可得5.94元的利息。)“小丽的本金是300元,到期时她每一年应得利息多少元?”(300元的5.94%。)学生口述,教师板书:300×5.94%。

  “二年应得利息多少元?”学生口述,教师接着板书:×2

  小丽的存款到期时可以得到的利息是35.64元。

  “想一想,存款的利息应该怎样计算呢?”先让学生说一说,教师再板书:利息=本金×利率×时间

  “小丽的存款到期时,她可以取出本金和利息一共多少元?”(335.64元。)如果有条件可以让学生看一看活期储蓄、定期储蓄的存款和取款的凭条。

  三、巩固练习

  做第2页“做一做”中的题目和练习一的第2题。先让学生独立做,然后再共同订正。

  订正练习一的第2题时,可以先让学生说一说:活期储蓄每月的利率是0。1425%,表示什么意思?再引导学生分步说出:280元每月可得利息多少元?6个月的利息是多少元?本金和利息一共多少元?

  四、作业

  练习一的第1题。

第一单元《百分数的应用》教材分析 篇11

  教学内容:

  第十一册,百分数的应用。

  教学目标:

  1.通过对比,使学生沟通分数应用题和百分数应用题的联系和区别,使学生理解和掌握“求一个数是另一个数的百分之几”的应用题的解题思路和方法。

  2.让学生在自主探索、合作交流的过程中理解百分率的意义,探求百分率的计算方法并学会计算。

  3.让学生在具体的情境中感受百分数来源于实际,培养学生用数学的眼光观察生活的意识,在应用中体验数学的价值。

  教学重点:

  掌握简单的百分数应用题的计算方法。

  教学难点:

  探索百分率的意义和计算方法。

  教学过程:

  一、开展活动,产生问题。

  1.师:同学们,上课前老师想问大家一个问题。土豆能浮在水上吗?

  (边说边做)老师这里有一杯凉开水,另一杯凉开水中有一些盐,如果教师把同一只土豆分别放入杯中,观察发现了什么?

  2.师:你能根据老师刚才的实验,提出相关的数学问题吗?

  生提,师随机板书,如:盐占盐水的几分之几?这个问题同学们会解答吗?

  (板书提供数据:盐80克,水170克)

  现在能解答吗?指名口答。80÷(170+80)=80÷250 =8/25

  3.小结:这是我们以前学过的求一个数是另一个数的几分之几的应用题,这类题的解答方法是──一个数÷另一个数。

  二、探索新知

  (一)如果求“盐占盐水的百分之几”该怎样解答呢?(生尝试)

  1.与前面的算法比较一下,你想说什么?(引导学生比较异同)

  3.师小结:它们的解法是相同的,都是用一个数÷另一个数,只是这类百分数应用题的结果要用百分数表示。

  (二)百分率

  1.师:通过刚才的计算,我们知道盐占盐水的32%。生活中,盐占盐水的百分之几一般叫含盐率。(板书:含盐率)揭题,今天这节课我们就来学习百分率的应用。(板书课题)

  反问:什么叫含盐率?怎样求含盐率?

  师:计算百分率的公式通常这样写:含盐率=盐的重量/盐水的重量×100%(板书)

  同学们,对这个公式有什么不清楚的地方吗?(解释:为什么×100%)

  2、出示例题

  一号杯中:倒入200克清水中放入10克糖。

  二号杯中:倒入200克清水中放入20克糖。

  师:你会求这两杯糖水的含糖率吗?含糖率=糖的重量/糖水的重量×100%(板书)

  3、想想这两杯糖水的口味会怎样?谁愿意尝一尝。为什么?

  因为含糖率9.5%比0.5%大,说明了什么?含糖率越高,糖水就越甜。

  三、知识迁移、完善揭题。

  1、 师:百分率在我们生活中是无处不在的,除了含糖率、含盐率外,你还能举出一些吗?老师这里也收集了一些。

  读一读

  实行科学种田,播种前需要进行种子发芽实验,计算发芽率;

  用花生仁、油菜籽等榨油,可计算出油率;

  每次考试后,老师要了解本班的及格率、优秀率;

  护林工人了解小树苗的成活情况,可计算成活率;

  工厂检验所生产零件的质量情况,需计算合格率;

  根据学生每天的出勤情况,可计算出勤率;

  调查学生作业的完成质量,可计算正确率;……

  2.小组活动:请大家组成四人小组,每人挑一个你感兴趣的百分率说说它表示什么意思,并尝试着像老师一样编一道求百分率的应用题,并算出结果。学生讨论后交流。

  四、比赛、调查、应用延伸

  (一)只列式,不计算

  1、加工400件产品,经检验,合格的有390件,求这批产品的合格率。

  2、六(1)班今天有48人到校,2人事假,求六(1)班今天的出勤率。

  3、某电视台调查了500个家庭,有462个家庭收看该电视台的节目,求该电视台的收视率。

  (二)判断

  (1)我校五年级共有100名学生,今天缺勤2人,今天五年级学生的出勤率为98%。

  (2)林场种了杨树100棵,成活了98棵,杨树的成活率是98%棵。

  (3)一批零件的合格率为85%,那么这批零件的不合格率一定是15%。

  (4)工厂加工了105个零件,合格率达100%,则这批零件有100个合格。

  (5)小麦的出粉率达到100%。

第一单元《百分数的应用》教材分析 篇12

  课堂教学目标:

  1.正确计算一些含有百分数的式题,正确求出有关含有百分数的方程的解。

  2.进一步理解税率、折扣、利率的含义,正确解答有关纳税、利息和打折以及其他有关百分数的实际问题。

  教学准备:多媒体教学设备

  教学过程:

  一、单元练习讲评:

  填空部分:

  重点讲评以下题目:

  第3小题,学生错误原因是没有分析题中两个数量的关系,没有按照解决实际问题的思路来分析。讲评时重点教给学生方法。

  第9小题,学生错误原因是把题中已知的工作时间就当成工作效率来计算。讲评时帮助学生从问题入手,分析一下问题是求什么,是哪两个数量进行比较。

  第10小题,本题有一定难度,讲评时重点帮助学生从含糖率的含义着手,然后用方程来解答这一题。(不要求全体学生全部掌握。)

  第12小题,先让学生分析错误原因,教师再有针对性地指导,可以借助画线段图来分析,帮助有困难的学生理解数量关系。

  判断:

  第2小题错误率较高,需要举例说明,通过计算帮助学生理解这里由于单位“1”发生变化,得到的百分数也是不同的。

  选择:

  第1小题,先请学生来说说自己的思考过程,教师及时组织学生分析这样做的错误之处,还可将题目更改为54减少了0.54,减少了百分之几?帮助学生辨析这两题的不同之处。

  第5小题,请做出正确选择的学生来交流各自的思考过程,本题还要教会学生做出选择后应进行检验。

  计算部分:

  “解方程”部分出现错误较多的是第3小题,重点讲评这一题。

  “计算下面各题”中出现错误较多的是第1、4小题,第1小题可重点指导学生运用简便方法来计算。

  解决问题部分:

  第5小题,部分学生画线段图和写等量关系存在错误,要重点讲评。

  第6小题,学生错误原因之一是把“优惠5%”和“打五折”混淆起来,错误原因之二是没有正确理解“共需付费多少元”的含义。

  第8小题,本题有一定难度,要重点帮助学生分析题中两个“20%”分别表示占了哪个数量的20%,启发学生思考:要知道是赔还是赚需要先求出什么,怎样求。

  第9小题,本题共三小题,学生错误集中在第3小题,重点分析第3小题。

  二、补充相关练习。

  见《天天练》上《第一单元单元测试》。

  课前思考:

  这份练习卷主要是帮助学生巩固所学的知识,进一步拓展学生的思维,让学生解决一些相对而言有难度的题目。对于个别的一些题目,只要大部分学生掌握即可,不要求每一个学生都掌握;对于一些学习有困难的学生,稍微放低些要求。尊重学生的个体差异,让每一个学生都获得不同的知识技能。

  课前思考:

  从学生做题情况来分析,对于有一定难度的,学困生无法正确理解题意,可见,学生对于较复杂的应用题的解答方法还没有达到灵活应用、灵活解答的程度,他们往往缺乏生活经验、不能运用所学知识解决生活中的实际问题。

  还有一些题,用方程来解答比较简单,但还是有许多同学用数学方法来解答,导致许多错误。归咎原因,学生基础知识薄弱,对基本的算理混淆不清,独立阅读和理解能力差,对于难题缺乏征服的信心和毅力,选择退缩或放弃。

  在评讲时,要教给方法,对于难理解的要给必要的解释,对学生要有层次的要求。加强补条件和问题的训练,培养学生辨析数量关系的能力,或通过自编应用题,加深学生对应用题结构和题意的理解,提高分析数量关系的能力。

  课后反思:

  从学生做下来的情况下,计算的确是个很大的问题,学生计算的正确率和速度都有待提高,对应用题的理解能力实在是不行。而且有的学生比较偷懒,有些题目明显是解方程比较简单或者不容易出错,可大部分学生都不会选择用方程来解答。

  今天让学生做了天天练的单元测试,对于填空题第5题学生错的比较多,“工作效率=工作总量÷工作时间”和路程问题结合起来做比较,学生就不难理解了。令我比较满意的是在一个班思考题居然有好几个学生提出不同的方法解答。

  课后反思:

  今天的数学课上,我先心平气和地给学生们介绍了全班整体练习情况,让他们对自己的学习情况在班中处于什么水平能有一个大致的了解,也便于学生给自己以后的学习能制定一个奋斗目标,有一个努力方向。

  讲评时,我选出每一大题中学生错误率较高的题目进行了重点讲评,并且请个别学生分析一下自己当时是怎样思考的,出现错误的原因是什么。我想,只有让学生明白自己的错误原因,那么下次遇到同样类型的问题时才有可能会避免再出现同样的错误。

  面对学生练习中出现的这样或那样的错误,我想反思自己这一单元的教学,可能由于高估了学生分析数量关系的能力,而在专项进行分析数量关系方面缺少力度,训练不够扎实。在接下来学习其他单元知识时可以补充这一单元的内容,继续辅导学生,帮助他们提高解决百分数实际问题的能力,尤其需要培养良好的审题习惯。

  课后反思:

  评讲前我没有一一公布分数,而只是公布最高分、最低分、分数段分布以及平均分,让学生清楚自己在班级中的定位,使其保持适度的压力和动力,从而最大限度地发挥学生的主观能动性,更为自觉地投入学习,争取更大的进步。

  为了让学生更为深刻地认识到解题中的错误,更为扎实地纠正错误,对一些较为典型、普遍的错误,请几名出现类似解题错误的同学走上讲台,分析其思维过程,剖析其错误原因,提出改正的办法。

  最后对表现好的进行表扬,对存在问题的提出善意批评的同时也包含殷切的期望,使学生面对现实,找到自己努力的目标,振作,积极地投入到学习过程当中去。

  单元:

  1、检测调整情况:由于检测内容比较多,一节课时间来不及,所以在周四完成填空、判断与解决实际问题三大部分,且将应用题的第8题与第9题的第三小题作为思考题,不作统一要求来处理。将剩下题目作为回家作业。周五先分析周四的内容,再集体边分析讲评边互批回家作业。自己核算单元检测情况。

  2、检测情况分析:由于部分内容没有当堂完成,所以学生的成绩可能有部分误差,有些出入。但总体情况与平时课堂表现相类似。从总体情况看,只有24人优秀,但及格率比我想象的好,有2人不合格。大部分学生主要问题出在对概念的理解上,对复杂的百分数应用题的解答方法没有完全掌握好。

  3、主要错题及分析:

  (1)类似于求一个数比另一个数多或少百分之几的习题,在填空题与应用题的第一题,错误比较多。主要原因是学生没有掌握这类问题的解题方法,对单位“1”的意识不强。

  (2)填空题是要用工程问题来理解,或者从分数的意义上来理解,且从工作时间转化成工作效率需转个弯,很多学生没有理解到这个层次。

  (3)填空题的第10小题,难度太大,超出学生的理解,全班没有一个学生解答正确。

  (4)选择题第3题,因为平时基本上强调在单位“1”未知的情况下,一般采用方程解答,只有部分学生已到了用方程解和算术解都会的程度,所以对算术方法解这题,大部分学生有困难,即使做对的学生,有些也是蒙对的,可能并不是很理解。

  (5)应用题第6题,对打八折后再优惠5%,很多学生理解为打八折再按5%计算,对题目意思理解错误。

  4、改进措施:

  (1)利用以后自习课时间对百分数应用题还需进一步强调解题思路的分析。

  (2)加强个别辅导,有2人不合格,还有部分学生成绩也很不理想。

  (3)加强对检查方法的指导。例:加强估算意识。应用题第6题,买12台优惠的程度还没有到打对折的程度,所以学生将原价打八折后再优惠5%,计算得到12台总共460元肯定有问题。还有生活中打折问题,打折后的价格肯定比原价少等等。

第一单元《百分数的应用》教材分析 篇13

  教学目标

  1.在学生学习了解答“一个数是另一个数的百分之几”的应用题的基础上,学习“求一个数比另一个数多(或少)百分之几”的应用题,使学生初步掌握分析方法,能够正确解答此类应用题。

  2.进一步提高学生分析、比较、解答应用题的能力,培养认真审题的好习惯。

  教学重点和难点

  掌握求一个数比另一个数多(或少)百分之几这类应用题的分析方法;能够正确地进行列式。

  教学过程设计

  (一)复习准备

  1.解答“一个数是另一个数的百分之几”用什么方法?(用除法)

  2.解答“一个数是另一个数的百分之几”的应用题,关键是什么?(找应用题中的标准量,也就是单位“1”,谁是标准量,谁就做除数。)

  3.口答,只列式不计算。(用投影出示)

  (1)5是4的百分之几?4是5的百分之几?

  (2)甲数是50,乙数是40,甲数比乙数多多少?甲数比乙数多的数是乙数的百分之几?

  (3)甲数是48,乙数是64,甲数比乙数少多少?甲数比乙数少的数是甲数的百分之几?

  4.板书应用题。

  一个乡去年计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?

  分析:通过读题,在这道题中,谁是标准量?

  你是从哪句话中找出来的?应怎样列式呢?

  如果将这道题的问题变为“实际造林比原计划多百分之几?”,应该怎样分析解答呢?这就是我们这节课要继续研究的比较复杂的百分数应用题。

  板书课题:百分数应用题

  (二)学习新课

  1.出示例3。

  例3 一个乡去年计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?

  (1)学生默读题。

  (2)例3与复习题4比较,有什么异同?

  (两道题条件相同,问题不同。)

  问题不同在哪儿?

  (复习题4求的是实际造林是计划造林的百分之几,例3是求实际造林比原计划多百分之几。)

  教师在例3中用红笔画出“多”字。

  (3)在这道题中,谁是单位“1”?是从哪句话中找到的?

  教师用双引号画出单位“1”。

  (4)求实际造林比原计划造林多百分之几是什么意思?学生分组讨论。

  (意思是:实际造林比原计划多的公顷数是原计划的百分之几?)

  板书:多的公顷数是计划的百分之几?

  (5)根据多的公顷数是计划的百分之几这句话,怎样列文字表达式?

  板书: 多的÷计划的

  (6)怎样列式计算呢?

  板书:

  (14-12)÷12

  =2÷12

  ≈0.167

  =16.7%

  答:实际造林比原计划多16.7%。

  问:14-12是在求什么?

  问:为什么除以12,而不除以14呢?

  (7)还有其它的解法吗?(学生讨论)

  汇报讨论结果:

  板书:

  14÷12-1

  ≈1.167-1

  =0.167

  =16.7%

  答:实际造林比原计划多16.7%。

  问:14÷12得到的是什么?再减去1又得到什么?

  2.把例3中的问题改为“原计划造林比实际造林少百分之几?”

  问:你怎样理解“原计划造林比实际造林少百分之几”这句话的?

  问:谁做单位“1”?(实际公顷数)

  问:怎样用文字算式表达?

  板书:少的÷实际的

  问:怎样列式计算?

  投影订正:

  (14-12)÷14

  =2÷14

  ≈0.143

  =14.3%

  答:原计划造林比实际造林少14.3%。

  问:14-12得到什么?为什么再除以14呢?

  问:还有不同的解法吗?

  板书:1-12÷14

  问:为什么例3与改变后的题得数不同?(单位“1”不同。)

  问:这两道题有什么相同之处?(解题思路完全一样。)

  3.把例3的一个条件改变。

  一个乡去年计划造林12公顷,实际造林比原计划多2公顷。实际造林比原计划多百分之几?

  (1)学生独立思考解答。

  (2)指名说解题思路。

  (3)板书算式:

  多的公顷数÷计划的

  2÷12≈0.167=16.7%

  答:实际造林比原计划多16.7%。

  问:此题和例3相比较,哪儿相同,哪儿不同?(条件不同,问题相同,解题思路相同。)

  4.把3题的问题稍作改变。

  一个乡去年计划造林12公顷,实际造林比原计划多2公顷。原计划造林比实际造林少百分之几?

  (1)学生只列式不计算。

  (2)说解题思路。

  板书:少的÷实际的

  2÷(12+2)

  (三)课堂总结

  今天我们学习了什么知识?解决这类题的关键是什么?

  师述:今天我们学习了求一个数比另一个数多(或少)百分之几的应用题。解决这类题的关键就是要找准单位“1”,然后根据问题列出文字算式来帮助大家列式计算。

  (四)巩固反馈

  1.分析下面每个问题的含义,然后列出文字表达式。

  (1)今年的产量比去年的产量增加了百分之几?

  (2)实际用电比计划节约了百分之几?

  (3)十月份的利润比九月份的利润超过了百分之几?

  (4)1999年电视机的价格比1998年降低了百分之几?

  (5)现在生产一个零件的时间比原来缩短了百分之几?

  (6)第二季度的产值比第一季度提高了百分之几?

  (7)十一月份比十月份超额完成了百分之几?

  (8)男生人数比女生人数多百分之几?

  2.在练习本上只列式不计算。(投影出示)

  (1)某校有男生500人,女生450人。男生比女生多百分之几?

  (2)某校有男生500人,女生450人。女生比男生少百分之几?

  (3)一种机器零件,成本从2.4元降低到0.8元。成本降低了百分之几?

  (4)某工厂计划制造拖拉机550台,比原计划超额了50台。超额了百分之几?

  3.判断题。

  男生比女生多20%,女生就比男生少20%。( )

  课堂教学设计说明

  本节课是在学生学习了一个数是另一个数的百分之几的基础上进行的。教学时抓住这一知识的连接点以旧引新,使学生很自然地由旧知识过渡到新知识。两个知识点连成一线,融会贯通。在新课教学中引导学生思考求比一个数多(或少)百分之几的题的解题思路,培养学生的分析能力。在教学方法上采取一题多变的方法,让学生在比较、区别中理解数量之间的关系,提高学生的辨别能力和思维水平。

第一单元《百分数的应用》教材分析 篇14

  教学目标:

  1、在具体的情境中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。

  2、能计算出实际问题中“增加百分之几”或“减少百分之几”,提高与用数学解决实际问题的能力。

  3、在解决问题的过程中体会百分数与现实生活的密切联系。

  教学重点:

  在具体的情境中理解“增加百分之几”或“减少百分之几”意义。

  教学难点:

  能计算出实际问题中“增加百分之几”或“减少百分之几”,提高运用数学解决实际问题的能力。

  教学关键:

  充分利用学生已有的知识基础,集合具体的实例让学生理解“增加百分之几”或“减少百分之几”的意义。

  教学过程:

  一、复习引入

  1、复习

  师:关于百分数,你们已经学过那些知识?

  指名回答,引导学生回忆已学的有关百分数的知识。根据学生的回答,教师板书

  百分数的意义

  小数、百分数、分数之间的互化

  百分数的应用

  利用方程解决简单的百分数问题

  2、引入

  师:从这节课开始,我们继续学习有关百分数的知识。

  二、探索新知

  1、创设情景,提出问题

  盒中有45立方厘米的水,结成冰后,冰的体积约为50立方厘米。冰的体积比原来水的体积约增加了百分之几?

  根据这一情景,你能获得哪些信息?

  指名回答,引导学生认识“水结成冰,体积会增加”这种物理现象。

  师:你认为“增加百分之几”是什么意思?

  指名回答,如果学生感到困难,教师可以通过画以下线段图帮助学生理解“增加百分之几”的意思是“冰的体积比原来水的体积多的部分是水体积的百分之几”

  师:你能独立解决这一问题么?那就请你试一试。

  2、自主探索解决问题

  (1)自主探索。

  让学生独立思考,解决情景图中提出的问题。教师巡视,及时了解学生中典型的算法。

  (2)合作交流。

  指名板演,学生可能会提供以下两种算法

  方法1:(50―45)÷45

  =5÷45

  ≈11%

  方法2:50÷45=111%

  111%―100%=11%

  全班交流时,教师要让学生说一说具体的想法。通过交流,引导学生认识

  方法1:先算增加了多少立方厘米,再算增加了百分之几。

  方法2:先算冰的体积是原来水的体积的百分之几;再算增加百分之几。

  3、即时练习。

  先让学生独立解决问题,再组织全班学生交流。全班交流时,教师重点引导学生理解“降低百分之几”的意义。在本题中,“降低百分之几”的意思是降低的钱数占原来的百分之几。

  三、巩固练习

  指导学生完成课本练一练中的第1题至第5题。

第一单元《百分数的应用》教材分析 篇15

  教学目标:

  1、能利用百分数的有关知识,解决一些与储蓄有关的实际问题,提高解决实际问题的能力。

  2、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的'好习惯。

  教学重点:

  进一步提高学生运用百分数解决实际问题的能力,体会数学与日常生活的密切联系。

  教学过程:

  一、谈话引入。

  课前布置学生分小组到银行去调查利率并了解有关储蓄的知识。

  师:课前同学们到银行调查了有关储蓄的知识,哪个小组愿意和大家交流你们的调查情况。

  组1:我知道人们把钱放到银行是有好处的。可以得到一些利息。

  组2:现在银行可以办各种储蓄卡,如果到外地出差,不用带现金,只带卡就可以了,既方便又安全

  组3:我们调查了存款的年利率。

  存期(整存整取)

  年利率 %

  一年 2.25

  二年 2.70

  三年 3.24

  五年 3.60

  组4:我们知道国债和教育储蓄不收利息税,其他的要交20%的利息税。

  师:同学们真了不起,了解了这么多。老师知道同学们在过年的时候,得到了一些压岁钱,你觉得怎样处理这些压岁钱呢?

  生:当然是存到银行了。

  二、探究思考。

  师:是啊,存到银行不但能支援国家建设,到期还能得到利息。根据存款的种类和时间的长短,利率是不一样的。咱们就以笑笑的300元为例,如果你有300元钱,打算怎样存款,你是怎么想的?

  生:我想存三年整存整取,时间长一些利息就会多。

  生:我存一年的整存整取,如果时间太长,需要用钱时取出来,就按活期存款计算利息了,那样利息就少了。

  师:你知道得真多,活期存款的利率低一些。

  师:同学们想得很周到,我们存钱时应该根据自己的实际情况,确定怎样存,刚才同学们说的存款方式,到期后利息究竟是多少呢?我们一起来计算。

  (教师给出计算利息公式:利息=本金x年利率x年限,并给出年利率表,学生计算300元存一年和三年整存整取的利息。)

  板书

  300 x 2.25% x 1

  =6.75 (元)

  300 x 3.24% x 3

  =29.16 (元)

  师:从1999年11月1日起,个人在银行存款所得利息应按20%纳税,这就是利息税。国家将这部分税收用于社会福利事业。

  师:下面大家再算一算300元存一年和三年整存整取各应交多少利息税?

  学生汇报

  6.75 x 20% = 29.16 x 20% =

  师:那有没有不用交利息税的呢?

  生:

  师:对,只有国债和教育储蓄是不需要交利息税的。

  三、练习巩固。

  1、小明的爸爸打算把5000元钱存入银行(两年后用)。他如何存取才能得到最多的利息?

  2、小华把得到的200元压岁钱存入银行,整存整取一年。她准备到期后将钱全部取出捐给“希望工程”。如果按年利率2.25%计算,到期后小华可以捐给“希望工程”多少元钱?

  3、把20__元钱存入银行,整存整取五年,年利率是3.60%,利息税率为20%。到期后,的本金和利息共有多少元?交了多少利息税?

  四、课堂总结

  通过今天的学习你有什么收获?

  课前布置学生分小组到银行调查利率并了解有关储蓄的知识。

  激发学生学习的兴趣,让学生在调查活动中,接触到更多的实际生活中的百分数,认识到数学应用的广泛性。

  提出“怎样处理这些钱”“存入银行有什么好处”等问题,使学生从中了解储蓄的意义。

  学生己有了储蓄的知识基础,对于存款的方式让学生自己讨论,在讨论交流中,学生感受到,需要根据实际情况选择合理的储蓄方式。再引出计算利息的方法。

  由于讨论的问题和数据都来自于学生,这样就使计算利息更具有实际意义,学生的学习兴趣和积极性也会大大提高。

  拓展学生的思维。综合应用所学的知识解决实际问题。

  结合实际对学生进行思想道德教育,珍惜现在的学习机会,支援贫困地区的失学儿童。

第一单元《百分数的应用》教材分析 篇16

  一.揭示课题

  今天这节课,老师准备与同学们一起应用百分数的知识来解决一些实际问题。(出示课题:百分数的综合应用)

  二.基本练习

  师:老师想向大家了解一些情况,你们愿意吗?

  生:愿意。

  师:你的身高是多少?

  生1:我的身高是1米58。

  生2:我的身高是152厘米。

  生3:我的身高是145厘米。

  师:你的体重是多少千克?

  生1:我的体重是43千克。

  生2:我的体重是38.5千克。

  师:自己的身高和体重都知道,但你知道自己体内大约有多少千克的血液在流动吗?(生茫然并窃窃私语。)

  师:你们称过吗?(生:没有)能称吗?(生:不能)

  师:是呀!称体内的血液这不要了大家的命了(众人笑)。所以老师去查了一些资料,终于找到了一个科学研究的结果。(课件出示:人体中血液的重量约占体重的7%)现在能知道了吗?

  学生根据自己的体重来计算体内的血液重量。

  反馈:

  生:我的体内有4.7千克的血液。

  师:是怎样计算的?

  生:用自己的体重乘以7%。

  师:你们都是这样来算的吗?

  生:是。

  (学生讲述计算过程,教师板书算式。)

  生:我的体重是44千克,所以是44×7%。

  师:对呀!用这样一条简单的百分数知识就可以解决体内血液的重量问题,其实类似的问题在我们身上还可以找到许多,比如说:12岁左右的少年,头高占自己身高的14.28%。(课件同步出示)看到这里,你能知道什么?

  生:能知道自己的头有多高。

  师:你想知道自己的头高吗?(生:想)请算一算吧!(学生计算,师巡回。)

  反馈:

  生:我的身高是155厘米,头高就是155×14、28%=22.134厘米。

  生:我的身高是141厘米,头高就是141×14、28%=20、13厘米

  师:与上面同学的计算结果比较一下,我们的头高都一样吗?为什么?

  生:头高不一样,是因为身高不相同。

  师:老师的头高是21.7厘米,你能帮老师算算身高吗?(课件同步出示)

  (学生计算,师巡回。)

  反馈:

  生:老师的身高是21.7÷14、28%=151厘米。

  师:都一样吗?(生:一样)噢,老师谢谢你们啦!(个别学生开始举手)你想说什么?

  生:不对,这里是12岁左右的少年头高是身高的14.28%,老师是成年人了。

  师:讲得有道理,人在各个不同的生长时期,头高与身高的百分比是不相同的,老师忘了告诉大家了(课件出示人在各个生长时期头高与身高的百分比)。33.3%

  胎儿的头高约占身高的33.3%

  婴儿的的头高约占身高的25%

  12岁左右的少年,头高约占自己身高的14.28%

  成人的头高约占身高的12.5%

  请你选择合适的条件,再为老师算算身高。(学生计算)

  生:老师的身高应该是21.7÷12.5%=173.6厘米。

  师:大家一样吗?(生:一样)这才差不多,虽然第一次计算身高时选择的条件是错误的,但是思考的方法是(生:正确的)。

  :我们用百分数的知识,能解决这些问题,你还知道日常生活中哪些方面也经常用到百分数的知识?

  生:商店打折的折扣。

  生:银行的存款利率。

  生:小麦的发芽率。

  生:产品的合格率。

  三.巩固深化

  师:看样子,百分数的知识作用可不小啊!老师也收集了一些这方面的材料(课件出示)这些问题你们有信心解决吗?(生:能)

  如果在解决过程中碰到困难可以同桌讨论,也可以向老师求援,能用多种方法解决那就更好了。

  (学生练习,巡回指导。)

  反馈讲评:

  (1)某班有男生25人,女生20人,男生人数比女生多百分之几?

  反馈时提问:为什么除以20,而不除以25呢?还有其它方法吗?

  (2)根据会务组统计,本次活动浙江省参加听课的老师约130人,比江西省参加的老师少90%。江西省参加听课的老师有几人?

  反馈时提问:你是怎样思考的?

  (2)小明家刚买了一套新房,向银行贷款40000元,月利率是0.466%,期限一年,到期时应付利息多少元?

  反馈时提问:利息如何算?12从哪里而来?

  (4)如右图,练市到南昌的总路程约是985千米,其中练市到杭州约占总路程的10%,老师坐汽车从练市到杭州用了2小时。

  照这样计算,从练市到南昌要多少小时?

  解法一:985÷(985×10%÷2)=20小时

  你是怎样思考的?

  解法二:2÷10%=20小时

  师:这样简单,你解释一下好吗?

  生:路程是全程的10%,在速度不变的情况下,那么从练市到杭州所用的时间应是全部时间的10%。

  师:从刚才的练习中可以体会到解决这些问题的方法是多种多样的,那么在解决百分数的问题时,你们一般是怎样来思考的呢?

  (学生讨论,同组互说。)

  归纳:一般是先找关键句,确定单位“1”的量,再根据具体情况,进行具体地分析。

  四.综合练习

  1.课件出示:练市小学的基本概况。

  练市小学创办于1920年,已有80多年的历史。创办初期只有13位教师,8个班级,而现在已有25个班,占地8400平方米,其中绿化面积占总面积的20%,学校教师数比创办初期增加了400%,现在在校学生1220人,相当于创办初期的488%。

  师:根据这些情况,你还能知道一些其它的问题吗?

  生:可以知道练市小学现在有多少位教师。

  生:可以知道练市小学的绿化面积是多少。

  生:可以知道练市小学创办初期有多少学生。

  师:请把你最想知道的问题计算出来。

  反馈:

  师:(指着8400×20%=1680平方米)能说一说你算的是什么吗?

  生:我算的是绿化面积有多少平方米。

  师:指着“13×(1+400%)=65(人)”你猜一猜他算的是什么?

  生:他计算的是现在学校教师的人数。

  师:还有其它的吗?

  生:(指着25÷18=312.5%)我算的是练市小学现在的班级数相当于原来的百分之几?

  师:讲的真不错,从这里我们可以看出练市小学在不断地发展,为了给我们同学更好的学习环境,我校正在新建一座现代化的新校。(出示新校设计效果图)

  课件出示:

  有62吨砂子准备运往建校工地,甲乙两人都想承运这批砂子。

  甲说:我有一辆载重10吨的大卡车,每次运费元。如果这些砂子全部由我运,运费可以打九折。

  乙说:我有一辆载重4吨的小卡车,每次运费90元。如果这些砂子全部由我运,运费可以打八五折。

  师:根据这样的情况,请你们设计几种不同的运货,并算出总运费。(同桌合作)

  生:我们决定全部由甲运:总运费是:62÷10≈7次;7××90%=1260元

  生:我们决定全部由乙运:总运费是:62÷4≈16次;90×16×85%=1224元

  生:我们决定由甲乙合运:甲运5次,乙运3次,总运费是:5×+3×90=1270元。

  师:你怎么会想到由甲运5次,乙运3次呢?

  生:这样运可以不运半车的,效率比较高。

  师:上面有三种不同的运货,你们最喜欢哪一种?请说明理由。

  生:我喜欢第二个,运费比较省。

  生:我喜欢第三种,同时合运比较快。

221381
领取福利

微信扫码领取福利

第一单元《百分数的应用》教材分析(通用16篇)

微信扫码分享