《分数的基本性质》教学设计(精选13篇)
《分数的基本性质》教学设计 篇1
学习目标:
1.使学生初步理解并掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的规律之间的联系。
2.会运用分数基本性质把不同分母的分数化成分母相同而大小不变的分数。
3.培养学生的迁移类推能力、抽象概括能力和观察能力。让学生体会到数学知识间的内在联系,感受学习数学知识的价值。
学习重点:归纳分数的基本性质,并运用性质转化分数。
学习难点:归纳分数的基本性质,并运用性质转化分数。
学习准备:教学课件。
学习过程:
环节预设 教师活动 学生活动 设计意图
一、复习导入 1.直接口答下面各题的商,说说是怎样想的?根据什么知识?
120÷20=
(12O×3)÷(30×3)=
(120÷10)÷(30÷10)=
2、分数与除法有什么联系? 学生思考并回答问题 通过复习导入,引导学生观察思考,从而提出本节课课题。
二、合作探究 1.教学教材第57页的例1。
让学生拿3张同样的长方形纸片,平均分成2份、4份、8份,并分别表示其中的1份、2份、4份,涂上颜色,分别用分数表示涂色部分
问:把3张纸条的左端对齐,平放在桌上。观察比较,你发现了什么?
通过动手操作、观察比较,我们知道、这三个分数的大小相等。这三个分数的分子、分母都不相同,但是它们的大小却完全相同,它们的分子、分母各是按照什么规律变化的呢?学生以小组为单位讨论,请代表发言。
随着学生汇报,老师板书。
教材59页第8题。
观察以上例子,你得出什么结论?(学生讨论,汇报。)
提问:这里“相同的数”是不是任何数都可以呢?为什么0要除外?(学生讨论)师:分子和分母如果都乘上0,则分数成为,而分数的分母不能为O;又因为0不能作除数,所以分数的分子和分母也不能同时除以O。
提问:你能不能根据分数与除法的关系和商不变的性质来说明分数的基本性质?
2.教学例2
出示例2。问:谁能说一说,在审题过程中要注意什么。(分析要点:①分母是12;②大小不变。)
问:想一想,怎样不改变分数大小,使分母变为12?应根据什么知识解决这个题的?
学生试着在课本上填写,集体订正。
问:在解答中应注意什么问题?
3.完成教材第59页第8题。学生独立完成,再集体订正。
请学生根据分数的基本性质思考并说明思路。 学生讨论交流并回答问题。 梳理整合学生零散的发现,让学生的认知逐步深入清晰、完整。
三、巩固应用 1.完成教材第58页练习十四第1题。
学生先独立涂色,然后比较大小并说明理由。
2.完成教材第58页练习十四第3题。
学生两人一组,由一人说一个分数,另一个人说出一个相等的分数。
3.完成教材第58页练习十四第5题。
引导学生先应用分数的基本性质,判断哪几个分数是相等的,然后在直线上把这个点画出来。 老师启发学生观察,推算出每个分数中分子与分母可以同时除以几,得到一个与原分数相等的分数。
4.完成教材第58页练习十四第6题。 学生进行思考、解答。 通过习题的演练,让学生将知识点进一步应用到实际解决问题当中。
四、课堂小结 通过今天的学习,你都有哪些收获呢?说一说学会了什么,自己表现怎么样。 学生思考并回答 让学生体验成功的喜悦,进一步拓展学生的思维和创造能力。
《分数的基本性质》教学设计 篇2
教学目标:
结合趣味故事经历认识分数的基本性质的过程。
初步理解分数的基本性质,会应用分数的基本性质进行分数的改写。
经历观察、操作和讨论等学习活动,体验数学学习的乐趣
教学重点:
理解掌握分数的基本性质。
教学难点:
归纳分数的性质。
学生准备:
长方形纸片。
一、创设故事情境,激发学生学习兴趣并揭示课题。
编了一个唐僧师徒4人分西瓜的故事,利用孙悟空的机智聪明和猪八戒贪吃的特点。创设问题情境引起学生的探究兴趣,通过把一个西瓜平均分成4块,猪八戒吃了一块,再把这西瓜平均分成8块,猪八戒吃了2块。最后把西瓜分16块,猪八戒吃了4块,设计这个故事的目的是使学生在已有生活经验和分数知识的背景下,了解猪八戒没有多吃到饼的事实,为理解分数的基本性质提供实践经验。在看完故事后向学生提问你了解到了哪些数学信息,想到了什么问题?
让学生讨论并用自己的方法说明八戒没有多吃到饼。让学生亲自动手折一折、分一分、比一比,通过课件从直观上让学生感受到这三个分数大小是相等的。而这两个分数的分子和分母都不相等,可分数却相等,这其中有什么规律呢,从而来揭示课题。
二、小组合作,探究新知:
1、动手操作、形象感知
出示课件,让学生观察讨论图中分数的涂色部分是多少?
A、谈话:请同学们拿出课前准备好的一张正方形的纸,你能先对折,并涂出它的1/4吗?
B、追问:你能通过继续对折,每次找一个和1/4相等的其他分数吗?
C、学生操作,并组织交流:每次对折后,正方形被平均分成多少份。涂色部分有几份。并思考可以用什么分数表示涂色的部分,得到的分数与1/4是否相等。交流时让不同对折方法的学生充分展示。
2、观察比较、探究规律
(1)通过动手操作,你认为它们谁大?请到展示台上一边演示一边讲一讲。
(2既然这三个分数相等,那么我们可以用什么符号把它们连接起来?
(3)这三个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?请同学们四人为一组,讨论这两个问题
(4)通过从左到右的观察、比较、分析,你发现了什么?
使学生认识到这四个正方形同样大,虽然平均分的份数不一样,但阴影部分的面积相等,四个分数也相等。课件出示连等式子。
【通过展示不同的对折方法,使学生体会解决问题方法的多样性,拓展学生的思维。】
3、引导观察:
请大家观察每个等式中的两个分数,它们的分子、分母是怎样变化的?
观察思考后。在课文上填空,再在小组内交流。然后教师再集中指导观察:
先从左往右看:1/4是怎样变为与它相等的2/8的?由2/8到4/16,分子、分母又是怎样变化的?谁用一句话说出它的变化规律?再从右往左看:4/16是怎样变化成与之相等的2/8的?2/8、1/4呢?用一句话说出它的变化规律?
4、归纳规律
提问:综合以上两种变化情况,谁能用一句话概括出其中的规律?
学生交流归纳,最后全班反馈“分数的分子和分母同时乘或除以相同的数 0除外 ,分数的大小不变,这是分数的基本性质”
5、小结
同学们在这节课的学习中表现得很出色,说一说你有什么收获或体会?
【通过小结,既对整个课堂学习的内容有一个总结,又能让学生产生后续学习和探究的欲望,将学生的学习兴趣延伸到了下节课】
四、巩固强化,拓展应用
多样的练习可以让学生及时巩固所学知识,又调动了学生学习的积极性。
五、游戏找朋友。
六、布置作业:
在上这课之前,认真备课,精心设计课堂思路,准备好教具。课前,活跃气氛。开始可能是由于农村吧,基本上,上课都是用黑板,难得一次上课时利用多媒体上课的。学生对此也是很有兴趣的,特别是在创设情景的时候,很开心的投入课堂气氛来。紧接着动手操作等步骤都很好。唯一不足是学生没感大胆发言。对于问题,答得不是很清晰。教师让学生主动探索,逐步获取规律,最后也都一一的解答并归纳分数的性质。对于从左到右的变化,分子分母都变大了,但分数大小不变。从右到左,分子分母都变小,分数大小不变。从而得出规律。对于这分数的性质要让学生抓住几个重点词,“都”“乘以或除以”“相同的数”“零除外”重点让学生熟记分数的性质。多层的巩固练习。加深学生的理解。并且能运用分数的性质完成作业。最后,让学生轻松愉快地应用着这节课所学的知识进行找朋友的游戏。
《分数的基本性质》教学设计 篇3
教学目标:
知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小不变的分数;培养学生观察比较、抽象概括及动手实践的能力,进一步发展学生的思维。
过程与方法:
经历探究分数基本性质的过程,感受“变与不变”,“转化”等数学思想方法。情感态度与价值观:激发学生积极主动的情感状态,养成注意倾听的习惯,体验互助合作的乐趣。
教学重点:
理解和掌握分数的基本性质,会运用分数的基本性质。
教学难点:
自主探究出分数的基本性质
教学准备:
PPT课件、每小组准备三个同样大小的圆形纸片、三张完全一样的长方形(正方形)纸、直尺、彩笔等。
教学流程:
一、故事导入激趣引思
引言:细心的同学一定听出来了,刚刚老师播放的是哪部动画片的主题歌?对,我们今天的学习就从西游记的故事说起。
讲故事:话说唐僧师徒四人去西天取经,一路上历经磨难。一天,他们走得又累又饿,幸好路过一个村庄,化缘得到三块同样大小的饼。唐僧心想:三块饼,四个人不太好分呀!但是很快他就想到了一个分饼的方案,他对徒弟们说:我准备将第一块饼,平均分成2份,八戒吃其中的二分之一;将第二块饼平均分成4份,沙和尚吃其中的四分之二;将第三块饼平均分成8份,悟空吃其中的八分之四,你们同意这样的分配方案吗?师父的话音未落,猪八戒便跳出来说:“我不同意这样的分法,师父你太偏心了,凭什么猴哥吃那么多有八分之四,而我却吃那么少才二分之一。同学们,请你们判断一下,猪八戒说的对吗,师父真的偏心吗?
生发表见解。
二、自主合作探索规律
1、反馈引导:1/2=2/4=4/8。“三个徒弟分得的饼一样多―――等式―――仔细瞧瞧这组分数等式的分子分母相同么?但是它们的大小却?再用变化的眼光瞧瞧,(师画正反向两箭头)我们发现分数的分子分母改变了,什么却没有变?师贴板帖分数可真与众不同呵!
2、提出探究任务:那如果我让们动手做或者联系生活实际想,像这样大小相等的分数,只有一组吗?你们能不能找出一些给老师看看?找之前请位同学为我们读一读小组合作学习要求:
(1)每个小组找出一组大小相等的分数,并想办法证明这组分数大小相等。
(2)思考:在写分数的过程中你们发现了什么规律?
组内商量一下然后开始行动!
3、小组研究教师巡视
4、全班汇报
交流评价(教师相机板书)圆纸片汇报长方形纸汇报正方形纸汇报及联系一组人数说发现规律把每组数从左往右或者从右向左仔细观察你能发现分子分母的怎样的变化规律?(可以举例说演绎推理深入)随机更换贴图
板书课题:分数的基本性质打出幻灯
5、反思规律看书对照找出关键词要求重读共同读
6、引证规律:3/4=12/16刚刚动手做我们验证了这组大小相等的分数的正确性并由此发现了分数的基本性质那你能否利用分数与除法的关系以及整数除法中商不变性质,再一次说明分数的基本性质。
三、自学例题运用规律
过渡:同学们刚刚的精彩表现展示出了你们强大的学习能力,所以在接下来的一段时间里,老师请你们自学课本96页的例2并完成相应“练一练”。现在开始
生自学
集体评议:例2练一练1和2,请说说你的根据和想法!重点让学生说说根据什么,分母、分子是如何变化的。
四、多层练习巩固深化
1、判断对错并说明理由
2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8
2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不变的分数
思考:分数的分母相同,能有什么作用?
3、圈分数游戏圈出与1/2相等的分数
4、对对碰与1/2,2/3,3/4生生组组师生互动
五、课堂小结课堂作业
结语:你看,运用数学知识玩游戏,也是乐趣无穷。这节课我们就上到这儿,
作业:余下来的时间请完成课本97页练习十八的1―3题,做在书上。
《分数的基本性质》教学设计 篇4
一、教学目标:
1、让学生经历分数基本性质的探究过程,理解和掌握分数的基本性质,初步建立数学模型。
2、利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。
3、培养学生的观察、概括等思维能力及(渗透变与不变)数学学习兴趣。
二、教学重点:
理解掌握分数的基本性质,它是约分,通分的依据
三、教学难点:
理解和掌握分数的基本性质,初步建立数学模型。
四、教学准备:
课件、正方形的纸。
五、教学设计过程:
(一)迁移旧知。提出猜想
1、回忆旧知
猜信封:老师手上的信封里有一个数、一道算式,我抽出其中一张,谁能猜出另一张是什么?出示:2÷3
你为什么这样猜呢?引导学生回忆分数与除法的关系。媒体演示:分数与除法的关系:
被除数÷除数=
谁能说一道与2÷3商一样的除法算式?学生一边说,教师一边板书算式。你为什么认为这些算式的商是一样的?引导学生回忆什么是商不变的性质?媒体出示:商不变的性质:
被除数和除数同时乘或除以相同的数(零除外),商不变。
2、提出猜想:
既然分数与除法的关系这么紧密。除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)
(二)验证猜想,建构新知
A、看图分类
下面是一组相等的正方形,请写出每个图形阴影部分所表示的分数,并把相同的分数分在一起。
B、讨论方法
师:你是怎么判断它们相等的?
师:它们相等,用算式可以怎么表示?
1/2=2/4=4/8
C、研究规律
师:这些相等的式子,除了我们从图上看到的大小相等之外,还有没有其他的秘密呢?
利用研究卡进行研究。
确定的研究对象
分子和分母同时乘上或者除以一个相同的数得到的分数
研究对象与得到的分数相等吗?
相等不相等
猜想是否成立?
成立不成立
充分利用学生的生成资源:揭示课题:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。(板书)
师:为什么要0除外?
师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)
练习:2/3=/18、6/21=2/、3/5=21/、27/39=/13
师:这里面什么变了,什么不变?(生:分子和分母变了,但分数的大小不变)
师:分子与分母是怎样变化的?(同时乘或除以相同的数,0除外)
师:分数的基本性质与商不变性质有什么联系?
D、质疑完善
3/4=3×/4×
师:括号中可以填哪些数?
预设:可以填无数个数
师:如果只用一个数来表示,填什么数好?
预设:字母
师:这个字母有什么特殊要求吗?(0除外)
得到一个初级的数学模型。3/4=3/4(X≠0)
让学生打开课本进行阅读、内化,并想一想还有什么问题吗?
(三)练习升华
1、5/7=/35、3/4=9/、3/=12/20、16/24=/3
2、把5/6和1/4都化为分母为12而大小不变的分数。
3、把2/3和3/4都化为分子为6而大小不变的分数。
4、把2/5的分子加上2以后,要使分数的大小不变,分母应加上多少?
5、和哪一个分数大,你能讲出判断的依据吗?
(四)总结延伸
师:这节课学了什么?
师:如果一个分数为A/B,你能用一个式子来表示分数的基本性质吗?
A/B=A/B(X≠0)或A/B=A÷X/B÷X(X≠0)(板书)
六、作业p87―1、2
板书设计
分数基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
A/B=A/B(X≠0)或A/B=A÷X/B÷X(X≠0)
6÷8
3÷4
12÷16
《分数的基本性质》教学设计 篇5
各位老师,同学:
大家上午好!我说课的内容是:人教版小学数学课标教材五年级下册75页―76页《分数基本性质》。下面我就从教材分析、学情分析、教学目标、教法学法及教学过程五个方面来谈一下教学过程设计及设计意图。
一、说教材
本节内容属于概念教学。《分数基本性质》在小学数学的学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。
二、说学情
学生已经清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。
三、说教学目标
综合分析课程标准要求及学生实际,我确定本节的教学目标如下:
1、理解和掌握分数的基本性质,并会运用分数的基本性质把不同的分数化成分母(或分子)相同而大小不变的分数。
2、初步养成观察、比较、抽象概括的逻辑思维能力,并且在自主探究中正确认识和理解变与不变的辩证关系。
3、受到数学思想的熏陶,养成乐于探究的学习态度。
教学重点:理解掌握分数的基本性质,它是约分、通分的依据。
教学难点:让学生自主探索、发现和归纳分数的基本性质,以及应用它解决相关的问题。
四、教法学法
根据本节课的教学目标,考虑到学生已有的知识、生活经验和认知特点,结合教材内容,本课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。通过观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。
五、说教学过程
本节课的教学过程我分五个部分进行
第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问题情境,揭示本节课要研究的问题。
第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。
第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。
第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。
第五部分:梳理知识,反思小结。主要是总结全课。
其中,第三部分“合作探究,发现规律”可以细化为三个环节:
环节一:动手操作,进行比较
这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较能力。
环节二:呈现问题,引导观察
这一环节主要呈现给学生这样一个问题,“第一环节中的分数的分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察能力。
环节三:交流汇报,得出规律
这一环节主要是学生汇报交流,得出结论。
如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质----分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括能力。
应该强调的是,无论学生说的多么好,教师最后的总结和确认是必不可缺的。
以上是我对《分数基本性质》一节的教学设计意图,有不当之处,请各位批评指导。
《分数的基本性质》教学设计 篇6
分数的基本性质 教学内容:六年制小学数学第十册69页――70页 教学目标 :1、理解分数的基本性质。 2、初步掌握分数的基本性质。 3、培养学生观察、比较、综合、概括的能力和初步的逻辑推理能力。 教学重点:理解与掌握分数的基本性质。 教材分析:分数的基本性质是在学习了商不变性质及分数与除法的关系的基础上进行教学的。它是今后学习约分和通分的依据,是分数四则运算的重要基础知识,是学生准确进行分数加减法计算的依据。 设计意图:通过复习商不变的性质和分数与出发的关系,为学生探索新知提供了材料,作好了铺垫,也为后面沟通分数基本性质与商不变性质打下了基础。 在新知的引入,我设计了让学生动手操作的方法(折纸、涂色),调动学生的多种感观充分感知数学事实,来引导学生观察、思考,激发学生的求知欲,调动学生学习的积极性。 通过先进的电教手段,如:投影仪,电脑等多媒体辅助教学。用形象的电脑图象,以活泼的形式将抽象的数学概念转变为学生易于理解概念,激发学生的学习兴趣,结合一系列的具有针对性的提问,引导学生观察思考,共同讨论新知,自己归纳出分数变化的规律,即分于分母都乘以或除以相同的数,分数和大小不变。 通过电脑出示的画象的逐步引入,使学生加深对分数基本性质的理解,逐步建立清晰的概念。这样让学生参与概念形成的整个过程,有利于学生学习的主动性,发展学生的逻辑思维。 在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,难度由浅入深。第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏的形式,加深学生对分数基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。第5题,判断练习,意在使学生加深对新知识的巩固,纠正容易出错的地方。第6题是思考题,是为了满足学有余力的学生的需要,意在发展学生的智能。在联系的过程中,也采用了电脑与投影及录音机的有机结合有效地提高了课堂效率。 教学过程 : 复习旧知,导入 新课 被除数 除数= 根据120 30=3 填数 (120 3) (40 3)=( ) (120 ___) (40 10)=4 (复习商不变性质) 验证并结实课题 学生用准备好的两张纸,进行动手操作。(感知 =) 教师再演示,引导学生发现 、 、 、三个分数的大小相等。观察什么在变,什么不变。――把单位“1”平均分的分数和取的分数,也就是分数的分子和分母发生了变化,而分数的大小不便,为什么分数的分子、分母在变,而分数的大小不变?它们的变化规律是什么?(引导学生带着问题去思考) 新授,探索新知 启发引导,揭示规律 (1) ==== 从左往右观察,探索分数的分子、分母的变化规律,引导学生去思考。讨论得出:分数的分子坟墓都乘以相同的数,分数的大小不变。 ,分数的分子分母有什么变化? 呢? 它们的大小又怎样呢?想一想,小姐出规律:分子、分母都除以相同的数,分数的大小不变。 归纳性质 谁能把上面的“分数的分子分母都乘以或除以相同的数。”两句话合成一句话来说。――分数的分子分母都乘以或除以相同的数,分数的大小不变。 这里指的“相同的数”是指什么数? 指出:分母是0的分数是没有意义的。假如分子、分母都乘以或都除以0,也是没有意义的。所以0除外。相同的数可以是自然数,也可以是小数,也可以是分数。 请全班同学将结语说完整,全班读。 小结:就是我们今天学习的内容:分数的基本性质。看书质疑。 勾出关键词语,帮助理解掌握。 (在新课的教学过程 中,利用计算机,将各种图形(也就是单位“1”)用主动的分割形式在大屏幕上清楚地进行演示,提高学生学习的积极性,更好地理解本课的学习内容,有效地提高教学效率,使教学目标 得以顺利地实施。) 巩固练习 在括号里填上适当的数使等式成立 几组相等分数的天空练习 (用计算机将题目演示在大屏幕上,全般一齐练习,再请个别学生说出答案,看答案是否和计算机演示的答案相同,全班同学来做小老师) 3、“请找我的好朋友”练习。(以游戏的形式来进行) 要求:(1)将几张写有分数的卡片发给几位同学,请 他们看清楚上面的分数。 ( 2 )练习开始,请有卡片的同学注意观察,和老师受伤卡片上分数大小相等的同学走出来,看谁最快最好。 (先将卡片上的分数用大屏幕显示出来,便于全班同学练习。) 4、判断对错 (1) ==( ) (2) ==( ) (3) ==( ) (4) ==( ) (这道题用计算机一题一题来演示,让全班学生能用所学的知识来进行判断,并能说出错在哪里,可以请个别同学来回答,如果答对了计算机回发出以示奖励的音乐;错了会告诉同学错了,再试一次。这道题的形式,充分运用了计算机的多功能作用,较生动活泼,引起学生的兴趣,提高教学效果。) 5、思考练习题 = 课堂总结 总结本课内容,复述分数的基本性质。 作业
《分数的基本性质》教学设计 篇7
一、说教学理念
1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。
二、说教材
1、教学内容
《分数的基本性质》一课是五年级下册第四单元的一个内容。这部分内容是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。在讲解这一知识点时,应注意加强整数商不变性质的回顾,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。
2、学情分析
学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。
3、教学目标:
(1)通过教学使学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。
(2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。
(3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。
教学重点:理解和掌握分数的基本性质;教学难点:学习自主探索,发现和归纳分数基本性质,以及应用它解决相应的问题。教具学具:课件,三张同样大小的长方形纸条、彩笔。
三、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:
1、实际操作法
指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
2、直观演示法
先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
3、启发式教学法
运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。
四、说学法
1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成练习题,达到检验自学的目的。
五、说教学过程
(一)新知铺垫
(二)新知导入
(三)新知探究
(四)新知探究
(五)新知训练
(六)新知应用
(七)新知强化
(八)新知小结
1、新知铺垫和导入
上课伊始我利用分饼的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的,而这几个分数的分子和分母都不相等,这其中有什么规律呢?继而揭示课题。
(设计意图)好奇是学生的天性,通过分地故事能快抓住学生的好奇心,使他们在心理上产生悬念,带着疑问迅速切入正题。
2、新知探究
(1)动手操作、形象感知
首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/2,2/4,4/8。观察涂色部分,说说发现了什么?在学生汇报时,说出:涂色部分面积相等,也就说明这三个分数大小相等。然后通过电脑再进一步证实学生的发现:通过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。
(设计意图)主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。
(2)观察比较,探究规律
首先,在学生折纸的基础上,通过小组讨论交流总结出分数的基本性质,让学生理解“同时乘上或者除以”的意义,以及为什么要强调“0除外”这个条件。其次,总结出分数的基本性质后,要和以前学过的商不变规律进行对比,找出二者间的联系,使学生更好的理解、运用性质。
(设计意图)这一环节重在培养了学生大胆交流、语言表达的能力,同时学生在汇报交流中使问题逐渐明朗化,最终验证了自己的猜想。要充分放手,让学生畅所欲言。
3、新知训练
在巩固阶段,我安排了三个不同层次的习题。其中“新知训练”是对“分数的基本性质”做进一步的诠释。“新知应用”是导入分饼时的题,难度不大,首尾照应,最后还安排了“新知强化”环节,属于开放性题。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣,培养了学生创新意识和解决问题的能力。
《分数的基本性质》教学设计 篇8
我说课的内容是:人教版小学数学课标教材五年级下册75页―76页《分数基本性质》。下面我就从教材分析、学情分析、教学目标、教法学法及教学过程五个方面来谈一下教学过程设计及设计意图。
一、教材分析
本节的内容属于概念教学。《分数基本性质》在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。
二、学情分析
学生已经清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。
三、教学目标
综合分析课程标准要求及学生实际,我确定本节教学目标如下:
1.理解和掌握分数的基本性质,并会运用分数的基本性质把不同的分数化成分母(或分子)相同而大小不变的分数。
2.初步养成观察、比较、抽象概括的逻辑思维能力,并且在自主探究中正确认识和理解变与不变的辩证关系。
3.受到数学思想的熏陶,养成乐于探究的学习态度。
教学重点:理解掌握分数的基本性质,它是约分、通分的依据。
教学难点:让学生自主探索、发现和归纳分数的基本性质,以及应用它解决相关的问题。
四、教法学法
根据本节课的教学目标,考虑到学生已有的知识、生活经验和认知特点,结合了教材内容,本一课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。通过了观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。
五、教学过程
本一节课的教学过程我分五个部分进行
第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问
题情境,揭示本节课要研究的问题。
第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。
第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。
第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。
第五部分:梳理知识,反思小结。主要是总结全课。
其中,第三部分“合作探究,发现规律”可以细化成为三个环节:
环节一:动手操作,进行比较
这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较能力。
环节二:呈现问题,引导观察
这一环节主要是呈现给学生这样的一个问题,“第一环节中的分数的分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察能力。
环节三:交流汇报,得出规律
这一环节主要是学生汇报交流,得出结论。
如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质----分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括能力。
应该强调的是,无论学生说的多么好,教师最后的总结和确认是不可缺少的。
以上是我对《分数基本性质》一节的教学设计意图,有不当之处,请各位批评指导。
《分数的基本性质》教学设计 篇9
尊敬的各位评委,各位老师:
大家好!我说课的内容是《分数的基本性质》。这课选自北师大版小学数学五年级上册第三单元的学习内容,这部内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。
根据本单元的教学要求和本课的特点,我设计本课的教学目标有三点:
1、(认知目标)理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2、(认知目标)理解和掌握分数的基本性质。
3、(能力、情感目标)培养学生观察、分析、推理的能力。
教学重点:理解和掌握分数的基本性质。
教学难点:让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
《数学课程标准》提出:把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。如何充分发挥、凸显现代信息技术的优越性和有效性而又省时省力呢?
本课依托网络平台,为学生创设一种大问题背景下的探索活动,以游戏这个学生感兴趣的明线下,借助网络实验室,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会数学的科学性。创设“猜想――验证――反思”的教学模式,以“猜想”贯穿全课,引导学生大胆猜想――验证猜想――完善猜想等,从而一步步使分数的基本性质趋于完善。
我设计的具体教学过程如下:
第一环节:激趣引入,凸显信息技术的趣味性。
“好的开始是成功的一半”,本课运用学生感兴趣的电脑游戏和卡通人物导入新课,有效地开启学生思维的闸门,激起猜测探究的兴趣,通过比较三个分数的大小,凸显矛盾冲突。(我在教学比较这三个分数大小时,学生们各抒己见,坚持着自己的观点不放,使得不同观点的矛盾激化,激发了学生的好奇心和争强好胜的心理,为后面的发现规律埋下伏笔。)
第二环节:探索规律,凸显信息技术的直观性和时效性。
1、提出猜想。
学生进入国外网站,通过操作,直观的观察情境中三个分数的涂色部分,发现这三个分数的大小是相等的。
再引导学生观察这组分数中“什么变了,什么没变”,从变了的分母、分子入手去观察它们是怎么变的,得到初步的猜想,“分数的分子、分母都乘或除以2,分数的大小不变”。
(“学起于思,思起于疑”。这个环节中,当学生猜测三个分数谁大谁小,运用网络实验室用比平时更少的时间、更直观的得出三个分数大小相等,为后面猜想的提出提供了更多观察、交流的时间)
2、完善猜想。
在得到初步猜想后,在游戏的大背景下,再出示一组分数:三分之二和十五分之十。学生猜测大小、进入网络实验室验证,发现这两个分数也是相等的。
这一部分的主要目的则在于完善初步猜想,使学生感受到分子、分母不仅可以乘或除以2,分数大小不变,还可以乘或除以像5这样更大的数,从而得到进一步的猜想:“分数的分子、分母都乘或除以同一个数,分数的大小不变”。
(在这一环节中,网络实验室再次起到了快速、直观知道分数大小的作用,唯一不同的是,这次使用了纸条这个不同的表现形式,通过不同的表现形式来表达分数的意义)
3、验证猜想,得出规律。
学生把符合猜想的三组分数记录在学习卡上,(用图片方式呈现)再到网络实验室里进行验证,看看是否也都具有一定的规律。通过大量的例子显示这不仅仅是学生的猜想,而是具有一定规律的。
最后运用分数与除法的关系和商不变的性质,从旧知迁移解释、理解新知,得到“同一个数”不能为0,从而确定了最后规律,得到本课课题:分数的基本性质。(平时的教学中能验证的分数少之又少,而学生通过猜想可以得到的分子、分母较大的相同大小的分数――如二分之一和百分之五十这样的分数就很难验证,通过我们的网络实验室就能很好地解决这个问题,充分体现了网络实验室的重要性和必要性。这样,在平常教学中最花费时间的环节――验证上节省了不少时间)
第三环节:游戏巩固,思维提升,凸显信息技术的交互性。
学生已经理解了分数的基本性质后,再次进入网络实验室,以玩游戏的形式巩固所学的规律。(教师也从这个过程了解学生的掌握情况。有的学生在玩这个游戏的时候甚至发现了两个分数之间的分子、分母分别不具备倍数关系,如十二分之六和十八分之九,还发现通过找中间数也能运用分数的基本性质解释这个现象。)
接着再通过回到第一组分数,利用分数的基本性质写出与第一组分数相等的分数来提升学生的思维,初步感知与第一组分数相等的'分数还有很多很多。让学生感受到分数的基本性质应用非常广泛,还需要他们进一步的学习和探索。
第四环节:提炼方法,积累基本的数学活动经验。
师生共同回顾学习过程,总结并提炼出探索规律的方法:猜想→验证→得出结论,为学生今后的学习提供科学的学习方法。
第五环节:网上交流,课内向课外延伸。
一节课的结束不仅仅是解决了几个问题,更重要的引发学生新的思考和新的探究行为,但一节课的时间是非常有限的。所以在课的最后,教师在课件上给学生提供了课堂上所用网络实验室的网址和老师的博客,让学生通过网络实验室这个平台及博客这个载体,在网络上回馈所学、发表言论。记得我公布博客地址不久就得到了学生的反馈,甚至听课老师也参与其中,给我提出许多的意见和建议。这样能让学生感受了网络资源丰富的同时,也使这节课不仅仅局限在课堂上,还拓宽到了网络以及今后的生活、学习中,真真正正的利用、发扬网络资源,把一些常规课堂无法实现的交流,都一一实现,体现了信息技术的人性化、学生主体性以及网络的延迟性和广泛性。
最后我以一句话结束我今天的说课“儿童是知识的创造者而不是被动接受者,他们主动地建构属于他们自己的知识和对事物的理解。当孩子们在经历数学、体验数学时,课堂才是充满活力的!”,谢谢大家!
《分数的基本性质》教学设计 篇10
大家好!今天,我很高兴能站在这里,向大家展示我的说课。我的说课内容是《分数的基本性质》。我将从以下这些方面来进行说明。
一、教材分析(课件)
《分数的基本性质》是人教版九年义务教育小学数学第十册中的内容。本节课内容是在分数的意义,以及分数与除法关系的基础上进行教学的。是后面进一步学习约分、通分以及分数运算的重要依据,因此本节内容将起着举足轻重的作用。
二、教学目标(课件)
根据教材内容及学生的认知水平,我制定了以下教学目标:
1、使学生理解与掌握分数的基本性质。
2、培养学生观察、比较、分析、概括等方面的能力。
三、教法和学法(课件)
为了使学生成为课堂的主人,我巧妙的扮演着引导着、组织者的角色。设计了情景设疑、观察发现、小组合作的教学方法。
新课程标准提倡:过程重于结果。有效的数学活动不能单纯的依靠模仿与记忆。因此我引导学生去动手操作,自主探究,游戏比赛等形式来组织教学。
四、教学过程(课件)
结合五年级学生的理解能力和年龄特征,我将本课的教学,设计了四个环节。
(一)创设情境、引发猜想(课件)
首先、我为学生带来了一个猴王分饼的故事:猴山上的猴子们都爱吃猴王做的饼。一天,猴王做了三张同样大的饼。猴王把第一张饼平均切成了两块,给了猴1一块。(课件)猴2看见了,眼馋的说:“猴王,猴王,我要两块。”猴王笑眯眯的说:“别急,别急,给你两块。”只见猴王把第二张饼平均分成了四块,给了猴2两块。(课件)猴3更贪心:“我要六块,我要六块。”猴王想了想,把第三张饼拿出来,平均切成了十二块,果真给了猴3六块。
“同学们,你们听完故事后,觉得哪知猴子分得饼最多?”
一上课,先听一段故事,学生们自然非常乐意,并会立即被吸引,积极的思考故事中的问题。通过这样的故事设疑,马上激起了学生探求新知的欲望。
(二)动手操作、初步感知(课件)
我让学生把准备好的三张圆片,拿出来代替猴王做的饼,分别按照折,画,涂的步骤,表示出每只猴子所得的饼,并用分数表示涂色部分。在这个过程中,学生必然会对那三个图形进行观察和比较,从中有所发现。(课件)通过多媒体的直观演示,学生更加确定,三只猴子分的饼确实一样多,有了实物的直观对比,学生不难理解,三个分数大小相等。可是为何分数的分子、分母不同,大小却相等?在此处,又设下悬疑,充分调动了学生的好奇心。这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,营造出良好的学习开端。接着,我因势利导,安排下一环节:
(三)比较归纳、揭示规律(课件)
(1)我板书这组分数后,请学生观察:从左往右看,分子是怎么变的?分母是怎样变的?此时我将主动权全都交给了学生,先独立思考,然后在四人小组中交流讨论,最后汇报结果。有的小组认为分子加了1,分母加了2等。我都笑而不答。而是鼓励学生逐一去验证各种猜想是否具有规律性。使学生在探索中发现,在发现中成长。直到有些学生发现分数的分子分母同时乘了2和3时,我及时给予了肯定和表扬。此时,为了突破本节课的重难点,我设计了一道填空题,可以很好的引导学生概括出这一发现,并让多名学生说一说。这样的设计,既培养了学生的概括能力,并为进一步学习增强了信心。在此基础上,我再布置一个任务:你再从右往左看,又有什么规律?有了前面的经验,这时学生很快得出:分数的分子、分母同时除以一个相同的数,分数的大小也不变。
(2)就在学生享受成功的喜悦时,我抛出了一个问题:分数的分子分母如果同时乘或除以0,会是什么结果?学生顿时领悟:要0除外。
(3)最后,我建议学生用一句话来归纳这两个发现,师生共同完善规律。此时我才板书课题,并告诉学生这一规律就叫分数的基本性质,使学生明确了本节课的教学内容。
(4)现在,学生明白了聪明的猴王原来是利用分数的基本性质来分饼的。即满足了猴子们的要求,又分的那么公平。(课件)如果猴4想要八块怎么办?如此设计,既首尾呼应,又培养了学生灵活解决实际问题的能力。
课堂的高潮之后,我启发学生还可以用商不变的性质来说明分数的基本性质,沟通新旧知识的联系。
(四)多层联系、巩固深化
练习的设计是巩固新知最有效的方法。我尽量给枯燥的练习赋予丰富多彩的形式。因此我精心设计的整套练习都是以游戏加比赛的方式来进行。(课件)首先,我安排男、女生以抢答的形式,来填空,重点要让学生说出解题依据。接着,我又设计了师生互动的游戏:我的分子填4,你的分母填多少?我的分母填48,你的分子填多少?最后在两个小组抢摘苹果的游戏中结束本节课的教学活动。
五、板书设计
说说我的板书设计,它遵循了目的性原则、概括性原则、直观性原则,能帮助学生把整堂课的学习内容融入大脑。
总结:我在整堂课的设计中努力体现“趣”“实”“活”三个字。以猴王分饼为主线,贯穿全文。由情景导入到动手操作,自主探究,最后归纳规律,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,领略成功的喜悦。新课程标准的要求得到了完美体现。
我的说课到此结束,谢谢大家。
《分数的基本性质》教学设计 篇11
一、说教材分析
《分数的基本性质》是义务教育课程标准实验教材人教版五年级下册第五单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系、整数除法中商不变的规律这些知识为基础的。分数的基本性质是建立在分数大小相等这一概念基础之上的。而两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。分数的基本性质又是约分和通分的基础,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。
二、说教学目标
根据教材分析制定如下的教学目标:
知识与技能:
1、使让学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
2、培养学生观察、分析和抽象概括能力。
过程与方法:
1、让学生经历分数基本性质的探究过程。
2、通过引导启发,帮助学生学会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数的方法。
情感态度与价值观:
1、体验合作探究的乐趣,培养学生的团结协作精神。
2、渗透“事物间相互联系”的辩证唯物主义观点。
教学重点:理解分数基本性质。
教学难点:归纳分数的基本性质,并运用性质转化分数。
教具教学准备:
多媒体课件,小棒、纸条、圆形纸片
三、说教学策略
为了营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着“将课堂还给学生,让课堂焕发生命活力”的指导思想,根据学生的认知规律,我采取以下教学策略:
1、采用了创设情境、引导探究、引导自学、组织讨论、组织练习等教学策略。
2、实际操作:指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促进学生的感性认识逐步理性化。
3、引导概括:先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
4、新课标指出:有效的数学学习活动,不能单纯模仿与记忆。动手实践、自主探索与合作交流是本节课学生学习的重要方式。
四、说教学流程
结合五年级学生的理解能力和年龄特征,我将本课的教学设计为六个环节。
(一)、创设情境,引发猜想
首先我为学生带来一个《猴王分饼》的故事。
猴山上的小猴子最喜欢吃猴王做的饼了,有一天,猴王做了三块大小一样的饼分给小猴子吃。它先把第一块饼平均切成4块,分给猴1一块;猴2见了说:“太少了,我要2块。”猴王又把第二块饼平均切成8块,分给猴2两块;猴3更贪,它抢着说:“我要3块,我要3块……”猴王又把第三块饼平均切成12块,分给猴3两。小朋友,你知道哪只猴子分得的饼多吗?
“同学们,你们认为猴王分得公平吗?”引发学生的猜想。
(这样就激发了学生的学习兴趣,为后面的学习做好了铺垫。)
(二)自主探索,寻找规律
(下面这个环节是课堂教学的中心环节,新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。)
1、小组合作验证猜想
这只是大家的猜想,究竟哪只猴子分得的饼多呢?亲自分一分,验证你们的猜想。
学生操作验证---集体汇报交流----展示成果
2、既然三只小猴分得的饼同样多,那么表示他们分得饼的三个分数是什么关系呢?这三个分数什么变了,什么没变?
学生得出:这三个分数是相等关系,分数的分子和分母变化了,但分数的大小不变。
3、猴王把三张大小一样的饼分给小猴一部分后,剩下的部分大小相等吗?通过观察演示得出3/4=6/8=9/12
4、我们班有64名同学,分成了四组,每组16人。那么,第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出1/2=2/4=32/64
(三)比较归纳,揭示规律
1、出示思考题
1/4=2/8=3/12
比较每组分数的分子和分母:
从左往右看,是按照什么规律变化的?
从右往左看,又是按照什么规律变化的?
通过观察,你发现了什么?
让学生带着上面的思考题,先独立思考,后小组讨论、交流。
2、集体交流,归纳性质。
3、师生共同总结规律,找出性质中的关键词,然后齐读,注意关键的字词要重读。
4、现在,大家知道猴王是运用什么性质分饼了吗?
5、沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。
(这样的设计就让学生感受到了数学知识的内在联系,同时渗透“事物之间是相互联系”的辨证唯物主义观点)
五、说教学评价
1、教学过程中采用自我、小组、集体等多种评价方式,激发起学生交流的兴趣。
2、多媒体课件的应用,创设生动的教学情境。
3、学生在发现、体验、合作、交流、归纳、总结中,自主参与整个学习过程,营造独立、自主的学习空间,学生成为课堂的主人。
《分数的基本性质》教学设计 篇12
教学目的:
1、理解分数的基本性质;
2、初步掌握分数性质的应用;
3、培养学生观察――探索――抽象――概括的能力;
4、渗透事物是相互联系、发展变化的辩证唯物主义观点。
教学重点:
从相等的分数中看出变与不变,观察、发现、概括其中的规律。
教学难点:
形成对分数的基本性质的统一认知。
教学准备:多媒体,自制演示教具。
教学过程:
一、激趣引新:
1、有位老爷爷把一块地分给三个儿子。老大分到了这块地的1/3,老二分到这块地的2/6,老三分到这块地的3/9。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑起来,给他们讲了几句话,三兄弟就停止了争吵。你知道阿凡提为什么会笑?他对三兄弟说了那些话?你想知道吗?这节课我们就来解决这个问题。
2、在下面的中填上合适的数。
1÷2=(1×5)÷(2×)=(1÷)÷(2÷4)
同学们现在已经能用分数的知识来解决问题了。
二、启发引导,探索新知。
1、下面是六年级三个班的同学到三块同样大小面积的正方形地里去种树,哪个班种植的面积大一些呢?
通过图形的平移、旋转等方法看出三个班种植面积一样大。
2.引导观察得出结论。
(1)通过拼图得到1/2=2/4=4/8
(2)引导观察、比较,提出问题:分子,分母都不相同,它们的大小为什么相同呢?
(3)引导思考探索变化规律:
从左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8
反过来看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2
3.共同讨论,引导学生抽象概括出分数的基本性质:
(1)怎么做能使分数的分子和分母发生变化,而分数的大小都不变呢?
(2)变化时同时乘或除以小数可以吗?
(3)0可以吗?3/4=3×0/4×0=?(分数的分母不能为0,在除法里0不能作除数,分子和分母都乘或除以相同的数,这个数不能是0。)
归纳分数基本性质:分数的分子和分母都乘或除以相同的数(0除外)分数的大小不变。
4.学习分数的基本性质以后,感觉过去我们学过类似的性质是什么呢?(商不变的性质)
(1)练习在□中填上合适的数
1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)
(2)你能把1÷2这个除法算式改写成分数形式?
你能用今天所学的知识解决老爷爷分地的问题吗?(学生交流、汇报)
5.组织练习
(1)判断:
1/5=1/5×3=1/5
5/6=5×2/6×3=10/18
8/12=8×4/12÷4=32/3
2/5=2+2/5+2=4/7
3/4=3÷0.5/4÷0.5
分数的分子和分母都乘或除以相同的数,分数的大小不变。
(2)画一画、填一填
(3)填空
1/2=1×/2×=6/
10/24=10○/24○=/12
15/60=/203/=9/12
6/18=/=/(有多少种填法)
6.通过练习在此性质中哪些是关键词?
7.巩固练习(选择你喜欢的一题来做)
(1)与1/2相等的分数有多少个?想象一下把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?
(2)9/24和20/32哪一个数大一些,你能讲出判断的依据吗?
三、课堂总结
今天这节课同学们学了分数的基本性质,有什么感想呢?回家讲给爸爸妈妈听好吗!同时希望同学们把今天所学的知识运用到今后的学习和生活中去,做一个生活的有心人。
四、课堂作业:练习十四第1――3题。
板书设计:
分数的基本性质
1/2=1×2/2×2=2/4=2×2/4×2=4/8
分数的分子和分母同时乘以一个不为0的数分数的大小不变
4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2
分数的分子和分母同时除以一个不为0的数分数的大小不变
综上所述分数的基本性质是:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
《分数的基本性质》教学设计 篇13
教学目的:
理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2.理解和掌握分数的基本性质。
3.较好实现知识教育与思想教育的有效结合。
教学难点:
理解和掌握分数的基本性质,并运用分数的基本性质解决问题,进一步加深分数与除法之间的关系。
教学准备:
板书有关习题的幻灯片。
教学过程:
一、复习
1.出示
在括号里填上适当的数:
指名说一说结果,并说一说你是根据什么填的?
二、课堂练习:
1.自主练习第4题。
学生先独立做,教师巡视,并个别指导,集体订正。
教师板书题目中的线段,指名让学生板演。
在直线那些分数用同一个点表示是什么意思?(就是问哪几个分数相等。)
怎样找出相等的分数?
让学生自己找。集体订正是要求学生说一说你是根据什么找出相等的分数的?
然后要求学生在书上把这几个相应的点找出来。指名板演。
2.自主练习第5题。
先让学生独立做,教师巡视。个别指导。
指名说一说你的结果,并说一说你是根据什么填的。重点要求学生说清楚利用分数的基本性质来进行填空。
教师根据学生的回答选择几个题目进行板书。
3.自主练习第6题。
先让学生独立做。教师巡视并个别指导。注意差生中出现的问题。
集体订正。指名说一说自己的计算过程和结果。
教师根据学生的回答选择几个题目进行板书。
4.自主练习第7题。
学生独立做。教师要求有困难的学生分组讨论,教师个别指导。
集体订正。指名说一说自己的计算过程。教师注意要求学生说清楚计算的根据和理由。
5.自主练习第8题。
学生先独立做。
集体订正时,教师先要求学生说一说可以用哪些方法来比较这些分数的大小?哪种方法最好?