周 长 教学设计(通用14篇)
周 长 教学设计 篇1
教学内容:义务教育课程标准实验教科书小学三年级数学上册第41页。
教学目标:
(1)知识与技能:让学生经过自己亲身体验,感悟周长的含义;通过小组合作与探究,用多种适当的方法来求出平面图形的周长;培养学生观察、比较及操作能力。
(2)过程与方法:采用在教室中摆放大图形,吸引学生兴趣,让学生主动参与亲身体验中来,通过走一走、看一看、描一描、测一测等方法让学生来感知周长的含义。
(3)情感、态度与价值观:用自己的亲身体验来说话,积极参与知识的探究,提出自己的见解。
教学重、难点:知道周长的含义。
教具准备:各类图形卡纸及练习纸。
教学过程:
(上课前已在教室中间摆放了一个图形。)
一、创设情境,导入新课:
t:今天小朋友们是不是感到特别奇怪,老师在咱们教室中间围了一个大大的图形,请你仔细观察这个图形,把你的发现跟大家说一说。
(学生从外形上来说,直线曲线上来说,从对称性上来说。)
t:观察得真仔细,小朋友们以后观察任何东西都要像今天这样仔细。好啊,那咱们观察过了,老师接下去就想请一位小朋友来走一走了。(教师示范:请一位小朋友仿照老师的走法,从一点出发,沿着这个图形的边线走一圈,请其他小朋友注意观察。)(学生走)
t:走得棒不棒?(棒!)你们观察得更棒,老师奖励大家一个问题:刚才这位小朋友他是沿着这个图形的什么走了一圈?(边线或轮廓)在数学上,我们把这个图形的边线或者说是轮廓叫作“周长”(板书:图形的周长)
二、合作交流,共同探究:
(一)教学周长
t:那你能用自己的话来说一说什么是周长吗?(学生交流。)
教师演示:我们从任一点出发,绕着它的边线走了一周,又回到这一点,那么这一周的长度就是它的周长。
(1)教师出示若干平面图形贴在黑板上,请学生来选择自己喜欢的一个图形来比划一下它的周长;
(2)观察一下身边的事物,你能指一指它们的周长吗?(我们还发现了物体表面的周长,板书:物体表面的)
t:我们发现了不光图形有它的周长,物体表面也有它的周长。
(3)印一印,描一描:利用你桌上的物体,选取它的一个面,用印一印的方法,描出这表面的图形的周长。
(① 印当中来发现不封闭图形;②老师也准备了两个图形,请你来描一描它们的周长:这什么这个不描呢?)(我们从一点出发,绕着图形的边线走,不能回到这一点,这个图形叫不封闭的图形,那你觉得什么样的图形才有周长呢?)所以在数学上我们可用一句更加简洁的话来概括:封闭图形一周的长度就是它的周长。
请你判断下面哪些图形能计算周长(能,请坐好,不能,请举手。)
(二)探求周长的方法
t:认识了周长,下面请你想想办法来求求周长吧。
这个任务就交给你们四人小组了。
小组活动:老师把黑板上展示的基本平面图形放入每个小组的信封里,请各各四人小组合作探究求周长的方法
交流:说说看,你们小组是怎样来求的?(测量、绳子围、对称性……)
小结:我们刚才在求周长方法时,发现一个图形比较平直就可以用尺子来量,比较弯曲就可以用绳子来量,还发现对称的图形只要求一半就行了……
三、应用迁移,巩固提高:
(1)我想知道这片树叶的周长有几厘米,怎么办?
(2)我用两根同样长的绳子围成一个三角形和一个四边形,谁的周长大?
(3)t:那你能这些方法来求一下刚才印下来的物体表面图形的周长吗?
(引到地上的教室中的大图形,以他们在上课时找到的特点可以用不同的方法来求周长了。)
※(4)小明的书桌面是一个长120厘米,宽50厘米的长方形。如果在它的二个角上分别裁去一个边长为5厘米的正方形,问你图形的周长发生了怎样的变化?(如图)
四、总结反思,拓展升华:
t:通过咱们一节课的共同学习,你收获了什么?
周 长 教学设计 篇2
周长单元教学目标:1、结合具体事物或图形,通过观察、操作等活动,认识周长。2、结合具体情境,通过观察、度量及比较、归纳等活动,探索并掌握长方形、正方形的周长的计算方法。3、能测量并计算三角形、平行四边形、长方形、正方形等图形的周长。4、能运用长方形、正方形的周长计算方法解决实际生活中的简单问题,感受数学在日常生活中的应用。5、结合具体情境,感知图形知识与实际生活的密切联系,建立初步的空间观念。单元教学重点难点:1、重点:1探索并掌握长方形、正方形的周长的计算方法。 2能测量和计算具体事物和三角形、长方形、正方形等图形的周长。 3能用长方形、正方形的周长的计算方法等知识解决简单实际问题。2、难点:指出并能测量具体图形的周长,探索并掌握长方形、正方形的周长的计算方法。课时安排:6课时
什么是周长教学目标:1、结合具体事物或图形,通过观察、操作等活动,认识周长。2、能测量并计算三角形、平行四边形、梯形等图形的周长。3、结合具体情境,感知周长与实际生活的密切联系。教学重点:结合具体事物或图形,通过观察、操作等活动,认识周长。教学难点:能测量并计算三角形、平行四边形、梯形等图形的周长。教学用具:线、直尺、皮尺。教学设计:一、情境导入:同学们,你们见过的树叶都式什么形状的?你们能画出来吗?今天我们就来一起画一画。二、探索新知:1、请同学们用一笔画出一片你所熟悉的树叶的外形。2、小组汇报学生各自尝试画的树叶。3、你们有办法量出画的那片树叶边线的长度吗?请试一试。4、学生单独测量或小组合作测量一片树叶。5、请同学们汇报测量方法和结果。(1)用直尺一段一段地量,然后加起来。(2)先用线来测量这条曲线,再用尺来量线的长度。(3)用皮尺沿着所画的边线直接测量。6、同学们都很聪明、能干,你们刚才量的是树叶一周的长度,也就式树叶的周长。我们把一个图形一周的长度叫做这个图形的周长。三、拓展应用1、摸一摸。(1)课桌面的边线。(2)数学书封面的边线。2、实践活动(1)量一量你的腰围和头围,并与同伴说一说。(2)量一量一片树叶的周长,并与同伴说说你的方法。3、连一连(1)用彩色笔描出下面图形的边线。
(2)量一量;、算一算下面图形的周长。(3)每小题两个图形的周长一样吗?①②
课后反思:
周 长 教学设计 篇3
教学内容:《义务教育课程标准实验教科书 数学(三年级上册)》第41页的内容。
教学目的
1. 通过说一说、摸一摸等活动使学生理解、掌握周长的概念。
2. 通过实践操作,探究周长测量策略,培养学生动手操作能力及概括能力。
3. 培养学生合作探究能力。
教学重点
使学生建立周长的概念。
教学难点
引导学生探究周长的测量策略。
教学过程
(展示各图形)
说说是什么图形,好看吗?
老师想将这些图形制作成小相框,有同学建议将这些图形用各色彩带镶上边,让小相框更美丽。
制作中遇到问题:每个图形要多少镶边材料呢?多了浪费,少了不好看。先测知边长(周长),再剪材料。
量哪儿好呢?请指一指。(一生上台指,其他书空。)
强调:看清从哪开始,绕边一周,回到起点,头尾相接,手指要紧贴图形边缘。
二、探究新知
1. 建立“周长”概念。
(1)今天咱们的课堂来了一位数学王国的朋友──周长。
(板书:周长)
“周长”朋友的名字里体现了他的特点。
谁认识这位朋友?请给大家介绍一下。
(学生介绍)
看看书本怎么介绍的,课本p41,读一读。
“封闭图形一周的长度,是它的周长。”
通过书本和同学的介绍你了解“周长”这个朋友吗?
(2)质疑“封闭”。(学生解答:头尾相接。)
小结:所有线段、曲线首尾相接才是封闭图形。
看看这组图形,都封闭了吗?那些图形我们能计算它的周长?
[补充:一个一边余出的正方形,让学生判断.引导学生正确认识,每条线首位相接,围成的才识封闭图形,否则不能求出正确的周长]
2. 实物的周长。
(1)“周长”朋友就在我们身边。
a 钟面的周长在哪?指一指,摸一摸。
b 圆柱盒底面的周长在哪?……(不能说盒子的周长,强调“面”。)
c 树叶的叶面
d 红领巾的面
(2)活动“找周长”。
从身边找“周长”朋友,并摸一摸,同组伙伴说一说。
(3)活动汇报。
3. 周长测量策略探究。
(1)回到引入图形。
这些图形的周长在哪儿?
所镶边的长度,就是图形的周长。
有办法知道上面这些图形的周长吗?
(简说什么方法,工具。)
[通过活动前的思考,让学生初步形成选择的策略,如测量月亮和心形等可以借助绳子,而测量正方形等可直接用支持测量]
(2)想亲自量一量周长吗?
每个小组的信封里都有这些图形,还有绳子,待会儿除了用绳,你还可以用尺子或别的工具进行测量,咱们要比一比哪一组的测量方法多。完成后请组长表格记录结果。
[学生在选择合适的工具时,拿着正方形等也都选用绳子,但是我准备的图形卡片较小,而线较软,在测量的时候并不好操作,而且误差也大.这也不是我的初衷,分析原因:其一,对与绳子测量,学生是第一次使用,充满了好奇,当看到绳子的时候,就忘了还有直尺这个工具;其二,学生认为用绳子只用测量一次(围一圈),而直尺却需要量四次.可喜的是,学生还是能判断出图形各边间的关系再测量,如长方形只用测量2条边,正方形测量1条边,心形测量半边,五角兴只用测一条边等]
(3)汇报。
方法一:直接尺量,这种量法适用于什么图形周长测量?(线段)
方法二:间接绳量,这种量法适用于什么图形周长测量?(曲线)
方法三:量后计算:这种量法适用于什么图形周长测量?(有重复出现的部分)
……
(4)你还想测量什么物体的周长?(此环节延伸到课外)
测量,记录。
三、总结
(1)这节课学习了什么?
我的思考:作为一节随堂课,我为这一节课准备了充分的学具材料,认为这一堂课是很适合小组分工合作完成的.在匆忙的准备过程中忽略了一些细节,如准备的图形过小,线条太细太软,不便学生测量.如果能把图形都粘在胶板上,那么操作的时候难度会降低很多.在合作测量前,虽然提了诸多要求,希望能培养学生的合作能力,但是自己心情兴奋,课堂节奏快,学生缺少冷静的思考,以致在测量环节中,学生一直拿着绳子无法测量,我还要不停地徘徊在小组间指导.一节课下来,疲惫万分,课前最担忧的状态还是重复出现了.如何引导小组合作,提高合作效率?这是努力尝试着下一次的进步!
周 长 教学设计 篇4
教学内容:教材数学第五册《周长》(p66~p68)
教学目标:
1.通过“描一描”“摸一摸”“量一量”等活动,体验感悟周长的含义。
2.借助实际操作,结合生活情境,进一步发展学生的空间观念,培养学生发现问题、探索规律的能力以及合作意识、创新意识。
3、让学生在活动中感受生活中处处有数学,并能综合运用所学数学知识解决生活中的简单问题。
教材分析:
认识周长,考虑到学生对“周长”的概念比较陌生,教材选择了学生比较喜欢、熟悉的小布艺这件物品,结合实际生活中,工厂生产小布艺前都要先剪好材料的实际需要,提出“生产两种小布艺,怎样确定每个小布艺的共边需要剪多长?”的实际问题,并要求学生合作研究解决。在交流小组不同测量方法基础上,通过“花边的长就是小布艺布料的周长”引出周长的概念。接着设计了指出硬币面、课本封面、课桌面边线的活动,进而告诉学生“它们边线的长度就是它们的周长”。
学情分析:
从“数学学习与学生的身心发展”的研究表明,每个学生都有分析解决问题的创造性潜能,都有一种与生俱来把自己当成探索者、研究者、发现者的本能,而且学生已经了解了三角形、平行四边形、长方形、正方形等平面图形的基本特征,城市的孩子通过美术课也理解了“边线”“轮廓”这些词的含义,因此教材让学生在“描一描”“摸一摸”“量一量”“想一想”“算一算”的基础上来理解周长的含义,更有利于学生的掌握。在教师的引导下,让学生“动”起来,使他们学会使用观察、比较的方法发现问题和提出问题,并对问题进行猜想、尝试和验证,有利于促进学生思维的发展。
教学流程预案:
一、情景导入:
(课件):秋天到了,秋姑娘带着礼物来到了我们身边,想知道是什么礼物吗?)(出示:叶子)秋天到,落叶飘,秋姑娘用这美丽的叶子来装点我们的生活,装扮我们的秋天。这份礼物,你喜欢吗?快拿出你的来看看吧!
二、实践探究:
(一)描周长
1、选择出你最喜欢的一片叶子,把它的轮廓描在纸上。
2、说说你是怎样描的?
3、刚才我们所描的叶子一周的长度,就是这片叶子的周长。
4、看蚂蚁爬叶子和蜻蜓的图形,介绍图形一周的长度就是它的周长。 (二)摸周长
选择身边物体某一个面,摸一摸它的周长。
(三)量周长
1、量生活中的周长:腰围和头围。
2、量老师给的物品的周长:请同学们利用手中的工具,想办法知道它们的周长是多少。先估一估,再实际去量一量,算一算。
小结:测量不同图形的周长,就要选择不同的测量工具,这样就可以帮助我们提高测量的效率和准确性。
3、量一量、
估计 测量
铅笔盒盖面的周长
数学课本封面的周长
鞋底面的周长
三、拓展练习:
看来,周长在我们的生活中用处可真不少!现在,小蚂蚁就遇到了困难,你能来帮助它吗?秋天,小蚂蚁开始准备过冬的食物了。它背了这么多的东西,现在有两条回家的路,就请你帮它选一条吧!
四、总结:
同学们现在正处在人生的春季,希望大家能从现在开始,走好每一步,来迎接人 生最灿烂的丰收季节!
周 长 教学设计 篇5
周 长 教学设计
总第18课时教学目标: 1、通过活动使学生理解、掌握周长的概念 。2、培养学生动手操作及概括能力。 3、使学生获得学习成功的体验。 教学过程: 一、认识周长,总结概念1、活动一 ⑴摸一摸自己的腰在哪,你能用软尺量一量自己腰的长度吗? ⑵谁能说说你的腰的长度? ⑶你的腰一圈的长度我们叫做腰的周长。 ⑷摸一摸你腰的周长在哪。 2、活动二 ⑴出示以各种实物:钟面、数学书、国旗、叶子。⑵你能指出这个钟面的周长在哪吗? ⑶那么数学书、国旗、叶子的周长又在哪呢?请你们同桌互相指一指。 ⑷全班汇报、互相指正。 3、活动三 ⑴出示课本第41页图形。⑵这些图形的周长在哪里?请你用笔描一描。 ⑶学生独立完成后汇报交流。4、周长的概念 ⑴通过刚才我们量腰的周长,找数学书、国旗、叶子的周长,描这些图形的周长,你能用自己的话说说什么是周长吗? ⑵学生说一说汇报交流。⑶打开课本看看书什么叫做周长,全班读一读。 ⑷图形一周的长度就叫做周长,为什么要加上封闭两个字呢? 二、巩固概念,探索方法1、你有办法知道这些图形或实物的周长吗?自己选一个看看你能用几种方法知道它的周长,然后再在四人小组里说一说。 2、学生活动。 3、汇报交流:你选的是哪个图形?你是怎么知道它的周长的?还有什么办法吗? 三、实践应用,概括总结 1、 周长在生活中应用和广泛,你能举出一个周长在生活中运用的例子吗?这节课你有什么收获?还有问题吗? 2、要计算下图的周长,你准备量哪几条边?最少量几条?为什么? 3、思考题: 小冬沿着跑道跑一圈,他跑的总长度是不是运动场的周长?在长方形镜框的四周围上铁皮,铁皮的长度是不是这个长方形镜框的周长?
周 长 教学设计 篇6
一、创设情境,导入新课
1、复习旧知(播放课件)
师:同学们,你们知道正方形的周长与什么有关吗?(边长)那正方形的周长等于什么?
2、揭示课题。
师:现在,老师给你们变个魔术。(演示课件圆)
师:有的同学反应可真快!什么是圆的周长呢?这也是我们这节课要研究的内容。(板书课题),谁能说一说什么叫圆的周长?有的同学已经举手了。
生:围成圆的这条线的长就叫做圆的周长,
师:这条线是什么形状的?
生:曲线
师:是曲线,那你能完整地说一遍吗?
生:围成圆的曲线的长叫圆的周长。(演示课件)
二、引导探索,探究新知
1、测量圆的周长的不同方法
师:老师这里有一个圆,那你们能告诉老师,“圆的周长指的是哪一部分的长”,同桌互相比画一下。
师:你们能量出圆的周长吗?(能)拿出你们的'圆动手量一量,看看哪一组最会动脑筋,测量得又快又好。(学生小组活动)
师:老师看很多小组已经找到方法了,哪个小组愿意第一个到前面来把你们的方法告诉大家?(学生上台演示讲解)
师:这种方法还真不错!还有没有不同的方法?(再请一位学生上台)真善于动脑筋!为了大家看的更清楚些,老师把这两种方法重新演示一遍,(演示课件1:球在直尺上滚动一周,直接量出球的周长。演示课件2:线绕圆一周,然后量出线的长度)请同学们看屏幕:
师:我们同学真是太棒了,在这么短的时间内找到这么多的好方法。那我们能不能用这些方法测量出所有圆的周长呢?
生:能!
(播放课件)转动绑着绳子的小球形成一个圆:能用刚才的方法量出这个圆的周长吗?生:不能!
师:那咱们能找到一种更简便、更科学的办法来解决这个问题吗?
2、探讨圆的周长与直径的关系
师:同学们真有信心!我们知道正方形的周长和边长有关系,周长是边长的4倍,那么圆的周长和什么有关系呢?
师:你觉得是和直径有关系,说说理由好吗?
师:现在请同学们观察大屏幕,(课件)你发现了什么?
生:我发现圆的直径越长,它的周长就越长。
师:观察得真仔细!那到底圆的周长与直径有怎样的关系呢?要解决这个问题,还请同学们继续测量,测量前先听好活动要求。(学生小组活动――测量)
师:好,现在我们来交流一下你们的实验结果。
(把学生的实验结果打在课件上)。
师:大家仔细观察分析,看能发现什么?
生:我发现了这三个圆的大小虽然不一样,但圆的周长和直径的比值都是三点一几。
师:这个同学真是好眼力。其他小组还有什么不同的发现吗?
生:所有圆的周长都是直径的3倍多一些。
师:看来大家的发现都一样,那我们再来看看这几个圆是不是也有这样的规律?(课件直观展示三倍多一点)看屏幕,注意仔细观察,看能发现什么?
生:圆不论大小,它的周长都是直径的三倍多一些.。
3、认识圆周率:
师:说得真好。圆不论大小,它的周长都是直径的三倍多一些.这是个固定不变的数,你们的这个发现和许多大数学家的发现是一样的,人们通常把圆的周长和直径的这个比值叫做圆周率,用字母π表示。(板书)
师:好,现在请同学们打开书63页,找出圆周率的概念,全班齐读。
师:圆的周长和它的直径的比值叫什么?用什么来表示?
师:老师收集了一些有关圆周率的资料,大家想看吗?看屏幕。(课件)
师:看了这些资料后,你了解到了什么?
师:我国古代人民真了不起!我相信:各位同学只要努力学习,将来一定会让我们中国成为世界上最强大的国家!
4、推导圆的周长的计算公式:
师:刚才我们用圆的周长除以直径求出了圆周率,那么谁能说一说到底怎样求圆的周长?能得出一个什么样的公式呢?
板书:C=πd
师:如果知道半径怎么求周长呢?
板书:C=2πr
师:这2个公式都可以来计算圆的周长,要求圆的周长必须知道什么条件?
生:圆的直径或半径。
5、现在我们就用我们推导出来的公式来解决问题,请看大屏幕。
三、初步运用,巩固新知
1、已知直径、半径求圆的周长
2、判断
3、已知周长求直径和半径
4、提问:小猴甩小球形成的圆的周长你会求吗?(课件)
四、小结
1、组织学生说说收获:
这节课你们学到了什么?
师:同学们从圆的周长、直径的变化中,看出了圆周率始终不变。如果我们长期坚持这样从变化中看出不变,你们就会变得越来越聪明。
周 长 教学设计 篇7
教学目标:
1、使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确地计算圆的周长。
2、培养学生的观察、比较、分析、综合及动手操作能力。
3、初步学会透过现象看本质的辨证思维方法。
4、结合圆周率的学习,对学生进行爱国主义教育。
教学重点:推导并总结出圆周长的计算公式。
教学难点:深入理解圆周率的意义。
教学准备:电脑课件、测量结果记录、计算器、直尺、直径不同的圆片、实物投影等。
教学过程
一、情景导入:
师:老师这里有一张图片,同学们想看吗?
师:请看大屏幕,这是我们学校的直径是9米的圆形水池,为了同学们的安全,学校要在水池的周围安装上护栏,需要多长的护栏呢?你有办法知道吗?
师: 我们看这个水池的边沿是圆形,安装护栏的长度就是圆的周长。如果我们知道了圆的周长,这个问题是不是就解决了?
师:这节课我一起研究圆的周长。
板书课题:圆的周长
二、探究新知:
1、圆的周长含义
师:请看大屏幕,这是一个圆,谁能看着圆再说一说什么是圆的的周长。
师:围成圆的曲线的长叫做圆的的周长。
2、测量圆的周长 师:怎样才能知道圆的周长是多少呢?师: 请同学们拿出准备好的圆片,你能想办法测量出它的周长吗? 生测量活动,师巡视。
师:谁愿意说说你是怎么测量的?
师:还有不同测量的方法吗?
师多媒体演示。
我们可以在圆片上作个记号,然后把圆片沿着直尺滚动一周,这样就测量出圆片的周长大约是31.5cm。
我们还可以用绳子绕圆片一周,作好记号,然后把绳子拉直,用直尺量出绳子的长度,就得到了圆片的周长也大约是31.5cm。
师:现在同学们都会测量圆的周长了,我们再来看圆形水池,请看大屏幕。请你用刚才的测量方法测量出水池的周长。
生:用绳子量出水池的周长。
师:水池那么大,用绳子子测量太麻烦了,滚动就更不行了。
师:有没有比测量更科学、更简便的方法呢?
生:计算
3、探究圆的周长计算方法
①探究圆的周长与直径的倍数关系
师:如何计算圆的周长呢?
师:我们可以回想一下,计算长方形的周长需要什么条件,怎么计算?
师:计算正方形的周长需要什么条件,怎么计算?
师 :同学们看,计算长方形、正方形的周长都需要一定的条
件,计算圆的周长也一定需要(条件),那这个条件可能是什么呢?圆的周长与什么有关呢?请同学们大胆的猜测一下。
师:如果圆的周长与直径有关,又有什么关系呢?
师 我们再来看,长方形的周长与它的条件长和宽之间有什么关系。
师:正方形的周长与它的条件边长之间有什么关系。
你们看,长方形、正方形的周长都与它们的条件之间存在着倍数关系。我们可以猜测圆的周长与直径之间也存在着(倍数关系)。
这个倍数会是几呢?同学们来猜测一下,这个倍数大于几
生1:大于2;
生2:大于3;
生3:大于4;
师:能说说你是怎样想的?
师:你从图上来看,圆的周长与直径之间的倍数会大于几。
生:直径把圆平均分成了2份,半个圆的曲线的长比直径长,圆的周长与直径之间的倍数一定大于2。
师: 有理有据。我们再来看,圆的周长和直径之间的倍数会小于几呢?
生猜并说理由。
师:这个问题有点难,老师来作个辅助图形,请看大屏幕。
(师多媒体演示圆外切正方形)
师:你发现了什么?
生:正方形的边长与圆的直径相等,正方形的周长是直径的4倍,而圆的周长比正方形的周长小,所以圆的周长与直径之间的倍数小于4。
师:你真聪明。通过同学们的猜想、交流,我们知道圆的周长与直径之间存在着倍数关系,并且这个倍数在2和4之间,到底圆的周长是直径的几倍呢?同学们能不能想办法求出来呢?
生:计算。
师:好,就用同学们这个办法来求。先测量出几个直径不同的圆片的.周长,再用圆的周长除以直径,来找出圆的周长与直径之间的倍数。
下面就以小组为单位,利用手中的学具来量一量,算一算,把计算的结果记录在表格内,计算的时候可以请计算器帮忙。 (小组活动,师巡视。)
师:一定注意要测量准确,减少误差。
(集体汇报交流)
师:哪个小组愿意把你们的计算结果给大家展示一下。
(生说并展示结果)
师:请同学们来观察这些圆的周长除以直径的商,有什么特点。
生:都比3大一点。
师:也就是说圆的周长总是直径的3倍多一些。实际上圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,(板书:圆周率)大家看用这个字母表示,(板书π)。
师:会读吗?(板书pài)
师:一起读,用手在桌子上写几遍。
师:会写了吗?
师:π就是圆的周长除以直径的商,它是一个固定的数,我们再看同学们计算的圆的周长除以直径的商为什么都不一样?
生:测量不准确。
师:很会分析问题,我们计算出的这些商都不一样,是因为测量有
误差造成的。
师:老师这里有关于圆周率的历史资料,同学们想看吗?
师:请看大屏幕。(解说:古今中外,有许多数学家研究圆周率。其中,我国著名的数学家和天文学家祖冲之约在1500年前,计算出π的值在3.1415926和3.1415927之间。成为世界上第一个把圆周率的值的计算精确到小数点后七位小数的人。比国外数学家得到这一精确数值的时间至少要早1000年。)
师:有关圆周率的历史资料还有很多,如果有兴趣,请同学们课下继续搜集,查阅好吗?
师:好了,通过同学们的猜想、测量、计算,我们知道了圆的周长总是直径的π倍。知道了直径,怎么计算圆的周长。
生:圆的周长等于圆周率乘直径。
师:如果用字母C表示,那么C=?
(板书C=πd)
师:如果知道了圆的半径,我们还可以怎样计算圆的周长?
(板书:C=2πd)
师:这两个公式都是圆的周长计算公式,利用它可以计算圆的周长。
由于π是一个无限不循环小数,在计算的时候,一般取两位小数。(板书:π≈3.14)
三、实践应用:
师:现在我们来解决几个问题好吗?
1、师:请看大屏幕,请你来算算在水池的周围安装护栏需要多长的护栏。生算,集体交流。师评价。
2、老师还有一题,请看大屏幕。(生读,试做,集体交流。)
3、判断题
4、思考题
四、小结。
周 长 教学设计 篇8
教学目标:
1.通过复习整理圆的性质、圆的周长和面积计算等重点知识,使学生所学的知识形成系统,能运用圆的知识熟练地解答圆的周长和面积的计算问题。
2.通过将圆的知识与其他知识进行整合,进一步提高学生解决问题和综合应用的能力,发展学生的空间观念。
3.在自主探究圆与正方形的关系的学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。
教学重点:能正确、熟练地进行圆周长和面积的计算。
教学难点:从探究活动过程中去发现圆与正方形之间的关系。
教学准备:课件,学具。
教学过程:
一、复习旧知,梳理体系
直接揭题:今天我们来复习本学期所学习的圆的有关知识──“圆的周长和面积复习课”(板书课题:圆的周长和面积复习课)
教师:我们已经学习了有关圆的知识,同学们还记得我们学习了圆的哪些知识吗?
小组合作,让同学们把所学的知识整理一下,然后进行汇报。
汇报交流,课件出示相关内容。
(1)圆的认识:
圆心O:决定圆的位置;
直径d:决定圆的大小;
半径r:在同一圆内,所有的半径都相等,所有的直径都相等,d=2r;
圆是轴对称图形,有无数条对称轴。
(2)圆的周长:
围成圆的曲线的长度叫圆的周长。
圆周率:周长与直径的比,是个无限不循环小数。
圆周长的计算:。
(3)圆的面积:
由长方形的面积来推导出圆的面积,近似长方形的长相当于圆的周长的一半,宽相当于圆的半径。
圆面积计算:。
圆环的面积:。
【设计意图】通过小组交流合作,唤醒学生以前所学圆的有关知识,并在交流中进一步加深对圆的性质、圆的周长和面积的相关知识的掌握和理解,通过梳理形成知识体系。
二、基本练习,整合知识
教师:刚才我们对本学期圆的相关知识进行了梳理,现在我们来看看下面几个问题,你能回答吗?
1.说说下面各题的.最简整数比:
(1)一个圆的半径和直径的比是多少?(1:2)
(2)一个圆的周长和直径的比是多少?(:1)
(3)两个圆的半径分别是2 cm和3 cm,,它们的直径比是多少?(2:3)
周长的比是多少?(2:3)
面积的比是多少?(4:9)
【设计意图】将圆的知识和比的知识结合起来,体现了知识的综合应用。并进一步理解圆的各部分知识之间的关系。
2.一个公园是圆形布局,半径长1 km,圆心处设立了一个纪念碑。公园共有四个门,每两个相邻的门之间有一条笔直的水泥路相通,长约1.41 km。(课件出示题目情境)
(1)这个公园的围墙有多长?
教师:请同学们思考,求公园的围墙的长度就是求什么?该怎么求?(因为公园是一个圆形布局,所以求公园围墙的长度就是求圆的周长,根据,=1 km,就能求出圆的周长是6.28 km。)
(2)北门在南门的什么方向?距离南门多远?(引导学生观察后得出,北门在南门的正北方向,距离南门的距离就是直径的长度,是2 km。)
(3)如果公园里有一个半径为0.2 km的圆形小湖,这个公园的陆地面积是多少平方千米?(引导学生用大圆面积减去小圆的面积来进行计算,也可以利用圆环的面积来计算这个公园的面积。)
(4)请你再提出一些数学问题并试着解决。(引导学生不仅可以从四个门的位置和方向去提出数学问题,也可以从圆和正方形的关系方面去提出数学问题并进行解决。)
【设计意图】通过观察平面图,提高学生的读图能力,并融合用方向和距离确定位置的内容,强化学生的空间观念;求公园的陆地面积其实就是圆环面积的变式,提升学生的知识迁移能力;通过学生提问题这样一个开放式问题,提高学生应用能力。
三、探究学习,培养能力
1.用三张同样大小的正方白铁皮(边长是1.8 m)分别按下面三种方式剪出不同规格的圆片。(课件出示问题情境)
(1)每种规格中的一个圆片周长分别是多少?(引导学生观察每种规格的圆的周长之间的关系,及总周长之间的关系。)
(2)剪完圆后,哪张白铁皮剩下的废料多些?
教师:猜想一下剪完圆后哪一张白铁皮剩下的废料多些?你能用自己的方法来证明吗?(引导学生用数据说理,通过计算,引导学生探究其中的一般性原理,假设第一个圆的半径是,某种剪法中剪掉的小圆的半径一定是,此时要剪掉个小圆,剪掉小圆的总面积为,即和第一个圆的面积相等。)
(3)根据以上的计算,你发现了什么?
【设计意图】通过三种剪圆的方式判断剩下的废料是否相等的验证过程,一方面提高学生的推理能力;另一方面,提高学生发现和提出问题、分析问题和解决问题的能力。
四、回顾总结,交流收获
教师:说说这节课我们学习了什么?你有什么收获或问题?
【设计意图】通过回顾,理顺各个知识点,让学生明确学习了什么内容,反思自己对知识的掌握情况。
周 长 教学设计 篇9
一、教材分析
“圆的周长”是人教版第十一册第四单元的教学内容。它是研究曲线图形的开始,也是今后学习圆面积及圆柱、圆锥等几何知识的基础。
教材从生活情境入手,先让学生思考自行车绕圆形花坛骑一圈大约有多少米,从而引出圆的周长的概念。接着引导学生思考怎样用不同的方法测量圆的周长,在实践中逐渐体会到有些圆不能测量出周长,怎么办?在此基础上,探索圆周率,并归纳总结计算公式、运用公式解题。为了有效内化计算公式,教材安排了相应的变式应用练习。
笔者以为,本教材有以下特点:一是层次分明、思路清晰、逻辑性较强;二是特别重视实验操作,突出直观教学,让学生在丰富的感性认识的基础上学习新知;三是注重培养学生的实验探究、归纳总结和发现规律的能力;四是通过圆周率的介绍,渗透了爱国主义教育。
二、学生分析
学生在三年级上册已经学习了周长的一般概念,熟练掌握了长(正)方形周长的计算方法。教材直观的情境导入,让学生理解圆周长的概念会很容易。学生已具备测量圆周长的基本技能,关键是圆的周长与什么有关,有什么样关系学生难以想到;或者容易受长方形、正方形周长公式影响,以为圆周长与直(半)径也一定成整数倍关系。这就需要教师适当引导、点拨,通过组织学生进行测量、计算、比较分析等探究活动,找出规律,总结特征。
三、学习目标
知识与技能:理解圆周率的意义,掌握圆的周长的计算公式。
过程与方法:通过测量、计算、猜测圆的周长和直径的关系,理解和掌握圆的周长的计算公式,并能正确地计算圆的`周长。
情感态度价值观:通过介绍圆周率的史料,渗透爱国主义教育
其中教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系,理解并掌握圆的周长计算方法。
四、教学过程:
(一)复习铺垫
1.复习圆的认识。
2.出示长方形、正方形及几个不规则图形,让学生指一指它们的周长,明确其计算结果用的是长度单位。
以上两步同时进行,为理解圆周长的含义做好铺垫。
(二)教学新知
1.在情境中内化概念
(1)具体感知圆周长的概念。
出示情境图(小蚂蚁在正方形和圆形路口爬行),谁能说说小蚂蚁走哪条路近一些?
说明,小蚂蚁走过的路程实际上就是圆的的周长。
师生共同小结:围成圆的曲线的长是圆的周长。
(2)板书课题。
2.在探究中理解公式
(1)设疑激思
鼓励学生用不同的方式测量圆的周长。
用绳测和滚动测量法,测量自己的学具圆获圆形实物的周长。
学生测量了这些圆的周长以后,教师进一步提问:“要是有一个很大的圆,怎么测量它的周长呢?如学校的圆形花坛。”如果学生说用卷尺绕花坛一周进行测量,教师可以举出更多的圆的例子,如空中划出的圆形,引导学生寻求更为一般化的方法。
学生猜想圆的周长是否也有计算公式时?
激思:圆的周长与什么有关?与直径到底有什么关系?
(2)操作填表
同桌两人一组,正确测量学具圆(实物)的周长和直径。并逐一汇总填表。
再次操作:修正自己的测量结果。
(3)比较发现
分别引导学生竖向和横向看表格,比较找规律,计算圆周长和直径的比值,最后比较、分析、归纳出圆周长是直径的3倍多。
(4)归纳总结
介绍圆周率和祖冲之的故事。
推导公式:圆周率=圆周长/直径;推出圆周长=圆周率×直径,圆周长=2×圆周率×半径。
几下字母公式。
3.在运用中强化公式
教学例1独立解题。
练习:口头列式并讲算理,巩固公式。
(三)巩固练习(图略)
基本练习。判断题,直接求周长。
变式练习。在边长4分米的正方形内化画一个最大的圆,再求周长。
综合练习。求阴影部分的周长。
五教学反思
1课前预设的学生活动太少,数学上没有从活动中探究新知;
2课前对学生原有任职的单位太简单,没有具体到学生。
周 长 教学设计 篇10
教学内容:苏教版小学数学第十册第98―99页。
教学目标:1、理解圆周率的意义,掌握圆的周长的计算公式。
2、通过测量、计算、猜测圆的周长和直径的关系,理解和掌握圆的周长的计算公式,并能正确地计算圆的周长。
3、体验数学与日常生活的密切联系,了解圆周率的发展史,激发民族自豪感和探索精神。
教学重点:理解和掌握求圆的周长的计算公式,能计算圆的周长。
教学难点:动手操作,探索圆的周长与直径的关系。
教学具准备:教师准备多媒体课件、学生实验报告表。学生准备直尺、直角三角尺两把、一角、五角、一元硬币名一枚、绳子。
教学过程:
一、联系生活,激活内需
同学们,为了倡导低碳生活、共建绿色家园,重庆一支自行车队伍头戴钢盔,身穿印有“环保、低碳”字样的文化衫,人手一辆自行车,从奥体中心出发,驶向主城各个方向,庞大的阵容吸引了不少市民关注。(课件出示图片)但是,他们选择的自行车却是不一样的,请同学们看两张图片。(课件出示自行车的两张图片及议一议的内容)
议一议:(1)车轮转动一周,谁的车走得远呢?为什么?什么是车轮的周长?
(2)车轮的周长和什么有关系?圆的周长与什么有关系?圆的周长与直径有怎样的关系呢?
揭示课题:圆的周长
【评析:从现代生活理念出发,也是从学生已有的知识经验出发,感知车轮转动一周的远近与车轮的周长有关,车轮周长的大小就是圆的周长的大小,圆的周长与直径的长短有关。一方面让学生受到了环保教育,另一方面也让学生自我发现研究圆的周长要从研究周长与直径的关系入手,也产生了进一步探究的必要性。】
二、实验操作,探究新知
1、在情境中内化概念
同学们已经知道圆的周长指的那部分,那你们拿出自己准备的硬币,用手摸一摸这个圆的周长,并且指给你的同桌看一看。那你能不能用自己的话说一说什么是圆的周长?
师生共同小结:围成圆的曲线的长是圆的周长。
2、测量圆的周长
(1)既然圆的周长是曲线那能不能用直尺直接测量呢?怎么测量呢?(让学生独立思考10秒左右)
(2)四人一小组讨论、交流测量方法。并把结果记录下来。(滚动法、绕绳法)
(3)小组汇报:哪个组愿意第一个到前面来把你们的方法介绍给大家?(结合学生的方法配以课件演示)
课件演示的时候让学生观察两种测量方法的相同点是什么?(都是把圆周长这条曲线转化成了线段,然后通过测量这条线段的长度就得到了圆的周长)
(板书:化曲为直)这种转化的方法在数学学习中很常见,同学们利用的很好。
3、探索规律
圆的周长与直径到底有怎样的关系呢?利用你手中的硬币及工具来测量一下圆的周长与直径。下面请同学们选用自己喜欢的方式以小组为单位进行测量,记录测量数据,并通过计算寻找周长与直径的关系,看看你们组发现了什么。把结论填在表的下面。(课件出示实验报告表,并让每组拿出课前发的表格。)
物品名称
周长
直径
周长与直径的关系(计算)
一角硬币
五角硬币
一元硬币
我们发现的规律是:
小组合作完成,全班交流实验结论。预设:圆的周长是直径的3倍多一些。
4、老师操作,即课件演示测量圆的直径和周长的过程。
师:老师也测量了圆的周长与直径,你们想看一看吗?演示课件。
总结:圆的周长总是直径的3倍多一些。
5、认识圆周率
(1)实验证明:圆的周长确实是直径的三倍多一点,我们把它叫做圆周率,很早以前我国的数学家就发现了这个规律,下面请同学们听有关圆周率的故事。请同学们在听的过程中把你认为重要的记在脑子里。
(2)听了这个故事,你有哪些感受?师:是啊,中国人真了不起!从古到今,一直如此,我希望同学们也能成为一个了不起的人。
(3)师说明:刚才同学们算到的结果都不是3.14,那是因为做实验时的误差所致。“圆的周长总是直径的三倍多一些”写成关系式,(板书:圆的周长÷直径=圆周率)圆周率用字母π表示。
“圆的周长总是直径的三倍多一些”还可以说成“圆的周长总是直径的π倍。
根据这个结论,你能说出计算圆周长的公式吗?如果用字母C表示圆的'周长,d表示直径,它的字母公式你会表示吗?(板书:圆的周长=直径×圆周率)能用字母表示吗?(板书:C=πd)还可以知道圆的什么条件求周长?(半径)知道半径怎样求呢?字母公式怎样表示?(C=2πr)
【评析:以小组学习的形式,放手让学生去探求圆的周长,目的是体现让学生进行自主探索的教学思想,同时也培养学生的合作意识与能力。这里提供三种不同的圆让学生求周长,向学生渗透“化曲为直”的数学思想及方法。通过介绍圆周率,在头脑中完善对圆的周长计算方法的认知,促进学生的自我建构,激发一定的民族自豪感和探索精神。】
三、巩固应用,内化知识
1、独立完成。
(1)“试一试”。
计算例4中三个自行车车轮的周长大约各是多少厘米。
(2)“练一练”。
有一种汽车车轮的半径是0.3米。它在路面上前进一周,前进了多少米?
3、小组合作完成。
(1)你知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程吗?要解决这个问题你想得到什么样的数据?
(2)(出示图片)圆形花坛的直径是20米,小自行车车轮的直径是50厘米,绕花坛一周车轮大约滚动多少周?
【评析:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程,体会到学以致用。实例计算可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为课后实践题打下很好的伏笔。】
四、回顾反思,评价小结
通过这节课的学习,评价一下自己学得怎样?你有什么收获?这些知识是怎样学到的?
师:同学们,生活中的数学问题还有很多,希望你们善于发现,善于探索,善于总结,相信你们一定会拥有更多的智慧,收回更多的快乐!
五、课后拓展,走进生活
小组合作完成,应用这节课学到的知识,想办法测量一下,从学校大门口到影剧院门口的距离大约是多少米。
【评析:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力。】
板书设计:
圆的周长
圆的周长是直径的3倍多一些
圆的周长=直径×圆周率
C=πd
C=2πr
周 长 教学设计 篇11
教学内容:新课标人教版小学数学六年级上册第四单元p62----64页
学习目标:
知识与技能: 理解圆周率的意义,掌握圆的周长的计算公式。
过程与方法:通过测量、计算、猜测圆的周长和直径的关系,理解和掌握圆的周长的计算公式,并能正确地计算圆的周长。
情感态度价值观:通过介绍圆周率的史料,渗透爱国主义教育
其中教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系,理解并掌握圆的周长计算方法。
教学重难点和关键:
重点:推导圆周长的计算方法。
难点:学生以合作实践,讨论交流的方式探究圆周率的含义。
关键:理解圆的周长与直径的关系。
教学具的准备:
多媒体课件,模型圆,几个直径不同的圆形,线、直尺等。
教学过程:
(一)复习铺垫
出示课件(广场,找学过的平面图形)为理解圆周长的含义做好铺垫。
(二)教学新知
1.在情境中内化概念
(1)由情境图,(课件出示广场图从中找学过的平面图引入新课。生,找出了圆。师,如果沿圆形喷水池走一周的长度,实际就是求圆的什么呢?生:周长。师:上节课大家对圆,有了很多的了解,今天我们继续探究有关圆的知识。)(板书:圆的周长通常用字母C)
同学心里已经知道圆的周长指的那部分,那你们拿出自己的圆片,用手摸一摸这个圆的周长,并且指给你的同桌看一看。那你能不能用自己的话说一说什么是圆的周长?
师生共同小结:围成圆的曲线的长是圆的周长。
既然圆的周长是曲线那能不能用直尺直接测量呢?
2、测量圆的周长
(1)、这条曲线的长度你有没有办法测出它的长度呢?(让学生独立思考10秒左右)
(2)、然后四人一小组讨论、交流测量方法。并把结果记录下来。(滚动法、绕绳法)
(3)、小组汇报:哪个组愿意第一个到前面来把你们的方法介绍给大家?(用滚动、绕绳的方法)。(结合学生的方法配以课件演示)
课件演示的时候让学生观察两种测量方法的相同点是什么?(都是把圆周长这条曲线转化成了线段,然后通过测量这条线段的长度就得到了圆的周长)
(板书:化曲为直)这种转化的方法在数学学习中很常见,同学们利用的很好。
(4)、今天老师也带来了圆,想请一位同学上来测量一下,谁愿意?
(5)、演示:转动的风车,形成圆形,问:你怎么不量呢?(这个圆会动,很难测量……如果把地球近似地看成一个球,绕赤道一周的长度是多少,这一周的长度你能测量出来吗?
(6)、小结:看来象这样动态的圆或很大的圆测量其周长确实存在很大的困难,这就需要我们探究出一种像长,正方形周长的计算公式一样普遍使用的方法来解决圆周长的问题。
3.在探究中理解公式(探究圆周长的规律)
(1)设疑激思
同学们想一想正方形的周长和什么有关系?(边长)哪圆的周长又与什么有关呢?( 到底是不是这样呢?我们来看一个实验。)(出示课件 电脑演示:从小到大依次出示2个虚圆)看来圆的周长的确与它的半径有关,与半径有关也就与直径有关,到底有什么样的关系这个问题要同学们自己去发现,请同学们用我们上面的'滚动法或绳测法测量手中圆的周长,并算出周长和直径的比值填如下表.)
测量对象
圆的周长(厘米)
圆的直径(厘米)
周长÷直径=
交流实验报告单,得出结论。
师:哪个小组愿意把你们组填写的表汇报一下。(生报数师填表)从他们汇报的数据,同学们发现了什么吗?
生:直径与周长的比值是三点多。
师:其他小组有不同意见或补充吗?
生;虽然圆的大小不一样,但我们算得周长也是直径的3倍多一些。
师:凡是通过测量计算发现你的圆周长是直径的3倍多一些的同学请举手。
师:这说明圆的周长除以直径的商是有规律的。在我们所测量的这些圆中,每个圆的周长都是直径的3倍多一些!如果再换成其他的圆是不是也有这样的规律?请同学们看电脑演示。
通过观察的确是这样,师:同学们真了不起,刚才,同学们测量了大小不同的圆,但却有相同的发现。(圆的周长是它直径的三倍多一些) (板书:圆的周长总是它的直径的3倍多一些。)
(2)认识圆周率
①、实验证明:圆的周长确实是直径的三倍多一点,我们把它叫做圆周率,很早以前我国的数学家就发现了这个规律,下面请同学们听有关圆周率的故事。请同学们在听的过程中把你认为重要的记在脑子里。
②、听了这个故事,你有哪些感受?(我自豪,我骄傲。太了不起了,)师:是啊,中国人真了不起!从古到今,一直如此,我希望同学们也能成为一个了不起的人。
③、师说明:刚才同学们算到的结果都不是3.14,那是因为做实验时的误差所致。“圆的周长总是直径的三倍多一些”写成关系式,(板书:圆的周长÷直径=圆周率)圆周率用字母π表示。
“圆的周长总是直径的三倍多一些”还可以说成“圆的周长总是直径的π倍。
根据这个结论,你能说出计算圆周长的公式吗?如果用字母C表示圆的周长,d表示直径,它的字母公式你会表示吗?(板书:圆的周长=直径×圆周率)能用字母表示吗?(板书:C=πd)还可以知道圆的什么条件求周长?(半径)知道半径怎样求呢?字母公式怎样表示?(C=2πr)
③ 、同学们通过自己的努力得出了求圆周长的公式,要求圆的周长,需要知道什么条件?(直径)
做一做 同学们现在我们能不能解决转动的风车,形成的圆的周长的问题?如果老师告诉你风车的半径是10厘米,你能算出周长吗?
老师给同学们带来了一个圆桌,它的直径是0.95米,你会算它的周长吗?(例1)
做一做.一辆自行车的车轮半径是0.33米.车轮滚动一周自行车前进多少米?(得数保留两位小数)
(三)巩固练习
1.计算下面各圆的周长。
d=2米 r=6分米 d=1.5厘米 r=1.5厘米
2.判断题
(1)π=3.14 ( )
(2)大圆的圆周率比小圆的圆周率大 ( )
(3)直接是2厘米的圆的周长是 ( )
3.14×2=6.28米
(4)半径3米的圆的周长是
3.14×3=9.42米
3.知识的拓展应用
计算广场圆形喷水池的周长。(计算两个圆的周长,环形,小圆的直径是40米,环宽5米)
(四)评价小结
通过这节课的学习,评价一下自己学得怎样?你有什么收获?这些知识是怎样学到的?
师:同学们,生活中的数学问题还有很多,希望你们善于发现,善于探索,善于总结,相信你们一定会拥有更多的智慧,收回更多的快乐!
周 长 教学设计 篇12
教具、学具准备:
多媒体课件、直尺、细绳、圆片、学生准备生活中的圆形物品等。
教学过程:
一、 认识圆的周长
1.情境导入。
师:同学们,看过《米老鼠和唐老鸭》吗?
师:今天钱老师把这两位“巨星”请到了我们的课堂,咱们鼓掌欢迎它们的到来好不好?
(生齐鼓掌!)
师:看,米老鼠和唐老鸭在跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。到底谁跑得路程长呢?(屏幕动画显示)
2.迁移类推
师:(让学生自由发言后说明)究竟它们谁跑得路程长?如果给你有关数据你能裁定谁跑得路程长吗?
(1)师:谁来说说要求唐老鸭所跑的路程,就是求什么?(就是求正方形的周长。)
(2)师:谁再来说说什么叫正方形的周长?你会求正方形的周长吗?
(围成正方形四条边长的总和叫做正方形的周长。正方形的周长等于边长×4。)
师:知道边长×4的含义吗?(正方形的周长与它的边长有关系,周长是边长的4倍。)指名说。
(3师:要求米老鼠所跑的路程,实际上就是求圆的什么呢?(圆的周长)
师:很好!那什么叫圆的周长,又怎样计算圆的周长呢?这节课我们就来研究这个问题,愿意吗?
(板书课题:圆的周长)
(4)师:我们已经知道,圆是由一条曲线围成的平面图形,这条曲线的长就是圆的周长。
师:谁能概括一下,什么叫做圆的周长呢?小组讨论后指名答。
(完成板书:围成圆的曲线的长叫做圆的周长)
师:(出示一教具圆片)谁来说说这个圆的周长就是指哪一部分的长?指名学生边演示边说。谁再来说说。
3.实际感知
师:请同学们拿起圆形纸片,小组之间互相指一指、说一说圆片的周长。
二.测量圆的周长
1.师:正方形、长方形的周长很容易尺量计算,大家猜猜圆的周长用尺量计算方便吗?(不方便)
师:(出示教具圆片)那有什么办法呢?在小组内讨论一下。量出一号圆的周长,并把数据填写在实验报告单相应的表格中。听明白了吗,开始。(小组活动)
2.小组汇报:(预设)
(1)师:哪个小组愿意来汇报?
方法一:用线绕
师:谁来与老师配合绕给同学们看看?
(师生合作用绕线的方法去测量圆周长)
师:这样绕了以后,怎么就知道了圆的周长呢?(生说明)
师:(课件补充说明)用线绕圆一周以后,捏紧这两个正好连接的端点,把线拉直,这两点之间线的长就是什么……?(圆的周长)
(2)师:除此以外,还有别的.方法吗?
方法二:把圆放在直尺上滚动一周。
师:(课件演示)请看大屏幕,在圆上取一点作个记号,并对准直尺的零刻度线,然后把圆沿着直尺滚动,直到这一点又对准了直尺的另一刻度线,这时候圆就正好滚动一周。圆滚动一周的长就是什么……?(圆的周长)
(3)师:现在老师给你一个圆,你会测量它的周长呢?(会。)
师:真的吗?谁敢来试试。
指名一生上台测量黑板上的圆。可能用线绕。
师:有什么感觉?(不方便!)
师:那你可以把它搬下来滚动呀!
这就说明用绕或滚这两种方法测量圆的周长,有时还很不方便。这就需要我们探讨出一种求圆周长的普遍方法。
三、引导学生发现圆的周长和直径之间的关系
1.猜测
师:正方形的周长与它的边长有关,周长是边长的4倍,圆的周长是否也与圆内某线段长有关系呢?(半径、直径)
2.验证
师:谁知道圆的大小是由什么来决定的吗?(半径或直径)
师:圆的周长是不是和直径有关呢,请同学们来观察几个圆。(媒体演示)
师:哪个圆的直径最长?哪个圆的周长最长?哪个圆的直径最短?哪个圆的周长最短?
师:你感觉到了吗?
(圆的直径越长,周长越长;圆的直径越短,周长越短。)
师:这就说明圆的周长肯定与圆的什么有关系?
(圆的周长与直径有关系。)
师:圆的周长与直径到底有什么关系呢?这个问题要同学们自己去发现。现在请小组内相互分工一下,每位同学测量一个圆片的直径,并计算出你那个圆片的周长除以直径所得的商,得数保留两位小数,并把数据填写在相应的表格中。
(生实际测量、计算、填表)
3.展示汇报
师:哪一个小组愿意来汇报你们的数据。
师:从他们汇报的数据看,同学们发现了什么吗?(商都是三点一几)
师:也就是每个圆的周长大约是它直径的3倍多一些。其他小组的也是这样吗?
4.揭示规律
师:这就说明圆的周长除以直径的商肯定是有规律的。在我们所测量的这些圆中,每一个圆的周长都是它直径的3倍多一些!
屏幕出示图3:
师:在这三个圆中,不管是大圆还是小圆,每一个圆的周长也是它直径的3倍多一些。如果再换成其它的圆来度量或者计算的话,同学们还会发现,它们每一个圆的周长仍是它直径的3倍多一些。谁可以用一句话来概括圆的周长与它直径的关系?
(圆的周长总是它直径的3倍多一些)
师:这就是圆的周长与直径的关系。这个表示3倍多一些的数,其实是一个固定的数,我们称它为圆周率。圆周率用字母"π" (读pài)表示。
5.介绍小知识。
师:讲到圆周率,我们不得不提到祖冲之。(媒体介绍祖冲之及圆周率的有关知识,增强了感染力,使学生受到良好的爱国主义教育。)
五、揭示圆的周长计算公式
师:圆的周长总是直径的π倍,想要知道这个圆的周长,其实我们只要测量出什么就可以了?
(测量出它的直径)
师:那么已知这个圆的直径该怎样求它的周长呢?(用直径去乘圆周率)
师:说得不错!(课件演示并教学用字母表示公式C=πd的过程)
(板书:C=πd)
师:如果已知圆的半径r,可以怎样计算圆的周长呢?你是怎样计算它的周长呢?你是怎样想的?
(板书:C=2πr)
练习:(屏幕显示)现在你能裁定米老鼠和唐老鸭谁跑的路程长了吗?
学生独立计算。汇报:唐老鸭跑的路程更远。
六、应用圆周长计算公式,解决简单的实际问题.
1. 教学例题:一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)
(课件出示)
(1)学生独立完成,汇报,弄清列式的依据。
(2)小结:已知直径求周长可直接套用公式。
2.通过媒体演示指导学生完成"做一做"作业。
饭店的门口竖着一个大钟,它的分针长30厘米。这根分针的尖端转动一周所走的路程是多少?
小结:已知半径求周长只要先用半径乘以2求出直径,再乘以圆周率,写成公式是:C=2πr.
五、总结,质疑,看书内化。
师:同学们,通过这节课学习你有哪些收获呢?谈谈这节课的体会与感受。
六、巩固练习。
1.判断。
(1)圆周率就是圆的周长和直径的比值。
(2)π=3.14。
(3)半径的长短决定圆周长的大小。
(4)同圆中,周长是直径的π倍。
2.一个圆形牛栏的半径是12米。要用多长的铁条才能把牛栏围上3圈(接头处忽略不计)?
3.杂技演员表演独轮车走钢丝,车轮的直径为40厘米,要骑过31.4米长的钢丝,车轮要转动多少周?
4.求半圆的周长:d=6厘米(图略)
周 长 教学设计 篇13
【教学内容】苏教版九年义务教育六年制小学数学第十一册”圆的周长”
【教学目的】
1、使学生理解圆周率的意义,理解掌握圆周长公式,并能正确计算圆的周长。
2、培养学生分析、综合、抽象、概括和解决简单的实际问题的能力。
3、学生进行辩证唯物主义“实践第一”观点的启蒙教育及热爱祖国的教育。
【教学重点】掌握圆周长的计算方法
【教学难点】理解圆周率的意义
【教具、学具准备】
教具:录像、投影片、3个大小不等的圆、分别在一端系上红、白小球体的绳子各一根。
学具:圆、直尺、小绳。
【教学过程】
1、导入新课。
(1)认识圆的周长。
教师出示一张正方形的纸片。提问:这是什么图形?它的周长指的是哪部分?它的周长和边长有什么关系?
(师出示正方形的图形。)
学生指着图形回答上述问题。
生:这是一个正方形的图形,这四条边的长度的总和就是它的周长。周长是边长的4倍。
教师当场把这张正方形的纸对折、再对折,以两条折线的交点为圆心画了一个最大的圆。提问:圆的周长指的是哪部分?谁能指一指。
师:通过手摸正方形周长和圆的周长,你发现了什么?
生:正方形的周长是由4条直直的线段组成的;圆的周长是一条封闭的曲线。
老师请同学们闭眼睛想象,圆的周长展开后会出现一个什么图形呢?
老师一边显示图象一边讲述:
以这点为圆心,以这条线段为半径画圆。通过圆心并且两端都在圆上的线段叫做直径。现在将圆的周长展开,请观察出现了什么情况。
圆的周长展开后变成了一条线段。
(2)揭示课题。
师:同学们认识了圆,知道了半径、直径和周长,学会了测量和计算圆的半径和直径,那么圆的周长能不能测量和计算呢?这节课我们就来一起研究圆的周长的计算。
(板书课题:圆的周长计算)
【评:为激发学生积极主动地学习圆周长的计算,教师注意了必要的复习铺垫,并引导学生研究正方形的周长与边长的关系,这就为学习圆的周长计算做好了知识上的准备和心理上的准备。渗透了要求圆的周长也需从研究圆周长与直径的关系入手】
2、学习新知。
(1)学生动手实验,测量圆的周长。
全班同学分学习小组,分别测量手中三个大小不等的圆的周长。并报出测量后的数据。
(学生测量圆的周长,并板书测量的结果。)
师:你们是怎么测量出圆的周长的呢?
生1:把圆放在直尺边上滚动一圈,这一圈的长度就是圆的周长。
师:你是用滚动的方法测量出圆的周长。如果这里有一个很大的'圆形水池,让你测量它的周长,能用这样的方法把圆形水池立起来滚动吗?
(老师边说边做手势,同学们笑了。)
生1:不能。
师:还有什么别的方法测量圆的周长吗?
生2:我用绳子在圆的周围绕一圈,再量一量绳子的长度,也就是圆的周长。
教师轻轻地拿起一端拴有小白球的线绳,在空中旋转,使小白球滑过的轨迹形成一个圆。
教师边演示边提问:要想求这个圆的周长,你还能用绳子绕一圈吗?
生2:(不好意思地摇摇头)不能了。
师:看来用滚动的方法或是绕绳的方法可以测量出一些圆的周长,但是实践证明是有局限性的。那么,今天我们能来能探索一种求圆的周长的普遍规律呢?
【评:从滚动圆测量、绕圆周测量,到空中的小球所经的轨迹画出的圆不好测量,不断的设疑、激疑,导出要探索一种求圆周长的规律,使学生感到很有必要,诱发学生产生强烈的求知欲。】
(2)根据实验结果,探索规律。
教师将一端分别系上小球(一个白球、一个红球)的两条绳子同时在空中旋转,使两个小球经过的轨迹形成大小不同的两个圆。
师:这两个圆有什么不同?
生:两个圆的周长长短不同。
师:圆的周长由什么决定的呢?
生:是由老师手上的那条绳子决定的。绳子短,周长短;绳子长,周长长。
师:请认真观察,(教师再演示)这条绳子是这个圆的什么?
生:是这个圆的半径。
师:半径和什么有关系?圆的周长又和什么有关系呢?
生:半径和直径有关系。圆的周长和半径有关系,也就是和直径有关系。
师:圆的周长和直径有什么关系呢?下面请同学们动手测量你手中那些圆的直径。
(学生测量圆的直径)
随着学生报数,教师板书:
圆的周长圆的直径
9厘米多一些3厘米
31厘米多一些 10厘米
47厘米多一些 15厘米
教师请同学们观察、计算、讨论圆的周长和直径的关系。
(学生讨论,教师行间指导、集中发言)
生1:我发现这个小圆的周长是它的直径的3倍。
师:整3倍吗?
生1:不,3倍多一些。
生2:我发现第二个圆的周长里包含着3个直径的长度,还多一点。
生3:我发现第三个圆的周长也是它的直径的3倍多一些
(板书:3倍多一些)
师:同学们发现的这个规律是否具有普遍性呢?咱们一起来验证一下。
滚动法验证:
绳绕法验证:
投影显示验证:
直径:
周长:
师:同学们通过观察、操作、计算所发现的规律是正确的,是具有普遍性的。圆的周长是它的直径的3倍多一些,到底多多少呢?第一个发现这个规律的人是谁呢?
投影出示祖冲之的画像并配乐朗诵。
“早在一千四百多年以前,我国古代著名的数学家祖冲之,就精密地计算出圆的周长是它直径的3。1415926---3。1415927倍之间。这是当时世界上算得最精确的数值----圆周率。祖冲之的发现比外国科学家早一千多年,一千多年是一个何等漫长的时间啊!为了纪念他,前苏联科学家把月球上的一个环形山命名为祖冲之山。这是我们中华民族的骄傲)
同学们的眼睛湿润了。教师很激动地对大家说:“同学们,你们今天正是走了一番当年科学家发现发明的道路,很有可能未来的科学家就在你们中间。努力吧,同学们!数学中还有许多未知项等待你们去发现、去探索。”
教师继续讲到:刚才我们讲到了圆周率是什么?(引导学生看书)圆的周长总是直径长度的三倍多一些,这个倍数是个固定的数,我们把它叫做圆周率。
(板书:圆周率)
圆周率用字母π表示。π是一个无限不循环小数。计算时根据需要取它的近似值。一般取两位小数:3。14。
师:如果知道了圆的半径或直径,你们能求出它的周长吗?这个字母公式会写吗?
(学生独立思考、讨论、看书)
板书公式:C =πd
C =2πr
【评:首先通过教师演示揭示圆周长有的长些、有的短些,然后引导学生观察、测量、计算、讨论圆周长与什么有关系?有怎样的关系?让学生充分感知,又反复加以验证,使学生对于圆周率的概念确信无疑。这一段教学设计符合儿童的认识规律,有利于教学重点的突出。结合认识圆周率对于学生进行热爱中华民族的教育,也是恰到好处的】
3、反馈练习、加深理解。
请同学们把开始测量的三个圆的周长用公式准确计算出来。
(学生计算)
师:通过用测量、计算两种不同的方法算出圆周长,你有什么发现?
生:计算比测量要准确、方便、迅速。
(1)根据条件,求下面各圆的周长(单位:分米)
(学生计算,得出结果)
师:为什么题目中给的数据都是10,可计算出的圆周长却不同呢?
生:题目中给出的数据是10,但第一个图中的10表示直径,第二个图中的10表示半径。因此选择的计算公式就不同。给了直径,可直接和圆周率相乘,得出周长。给了半径,就要先乘2,再和圆周率相乘,得出周长。
【评:教师注意运用比较的方法进行教学。给了两个数据,一个直径是10分米,一个半径是10分米,让学生计算后区分不同。这样可以弄清知识间的联系与区别,有利于揭示本质属性,能有效地促进知识技能的正迁移。】
(2)判断正误。(出示反馈卡)
① 圆周长是它的直径的3。14倍
② 圆周率就是圆周长除以它直径的商
③ C =2π r =πd
④ 圆周率与直径的长短无关
⑤ π> 3。14
⑥ 半圆的周长就是圆周长的一半
一部分同学认为第⑥题是错误的。
教师举起了表示半圆的模型,(如图)
请判断失误的同学们亲自指一指半圆的周长。
在操作中,同学们恍然大悟,发现半圆的周长
比圆的周长的一半多了一条直径的长度。
(3)抢答。直接说出各题的结果。(单位:厘米)
① d =1 C =
② r =5 C =
③ C =6。28d =r =
(同学们争先恐后地报出自己算出的答案)
(4)运用新知识,解决实际问题。
教师口述:在一个金色的秋天,我和同学们来到天坛公园秋游,一进门就看见一棵粗大的古树,我问大家:你们有什么办法可以测量到这棵大树截面的直径?当时张伟同学脱口而出:好办,把大树横着锯开,用直尺测量一下就可以了。
同学们听了这个故事,摇摇头,表示不赞赏。
一位同学站了起来:“张伟锯古树该罚款了。”
教师补充了一句:“是啊,你们有什么比张伟更好的办法吗?”
教室里热闹起来,同学们七嘴八舌地议论着……
生1:“不用锯树,只要用绳子测量一下大树截面的周长,再除以圆周率就可以计算出大树截面的直径。”
(同学们笑了,鼓起掌来,表示赞赏。)
(四)课堂小结:
师:这节课学习了什么?请打开书----看书。
教师再一次请同学们观察黑板上贴着的三个圆,提出问题:“这三个圆什么在变,什么始终没变?”
师:同学们通过圆的直径、周长变化的现象,看到了圆周率始终不变的实质。同学们能经常用这样的观点去观察和分析问题,会越来越聪明的。
(板书:变----不变)
师:下课的铃声就要响了,最后我留一个问题,请有兴趣的同学可以试一试。
画一个周长是12。56厘米的圆。怎样画?
【简评:这节课的设计体现以下几个特点:
1、教学目的明确,能从知识、能力、思想品德教育三个方面综合考虑,明确、具体,教学过程很好地完成了教学要求。
2、能深刻领会教材的编写意图,能准确地把握教材的重点和难点,知识的呈现过程层次清楚,能组织学生积极投入到获取知识的思维过程当中来。教学要求符合学生实际,环节紧凑,密度得当。
3、教学方法既灵活多样又讲求实效。注意发挥教师的主导作用和学生的主体作用。教学程序设计比较精细,或由旧知识导入新知识,或教师演示直观教具,学生不止一次地操作学具,向学生提供丰富的感性材料,创设情境,并能适时地引导学生抽象概括,培养思维能力。整节课始终注意以教师的情和意,语言的生动、形象,富有逻辑性来吸引学生,注意让学生循序渐进地感知,不断完善学生的认知结构。
4、能精心设问,问题能从多角度提出,正反向进行。问题提得准,导向性强,设问有开放性,语速恰当,给学生留有思考的时间。
5、练习的安排计划性强,有针对性,先安排了一些巩固新知的基本练习,又安排了判断练习,口算练习,解决实际问题的练习。练习有层次,形式多样,学生愿意做、愿意学。安排操作性练习,能启发学生的创造,培养学生解决实际问题的能力。】
周 长 教学设计 篇14
一、教学目标
(一)知识与技能
理解圆周长和圆周率的意义,理解并掌握圆周长的计算方法,并能解决简单的实际问题。
(二)过程与方法
经历猜测、验证、操作等学习活动,探究圆周率的近似值,在这个过程中发展学生的数学思维水平及动手操作能力。
(三)情感态度和价值观
通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。
二、教学重难点
教学重点:理解和掌握圆的周长的计算方法。
教学难点:圆周率的探究。
三、教学准备
多媒体课件。
四、教学过程
(一)创设情境,引发思考
1.情境导入,揭示课题。
教师:老师家的菜板有点开裂,你有好办法吗?(课件出示情境图。)
学生:给它加一个箍。
教师:在它的边缘箍上一圈铁皮是个好办法,那么需要多长的铁皮呢?
教师:求铁皮的长度,就是求圆的什么?
学生:求铁皮的长度,也就是求圆的周长。
教师:谁能用自己的话说一说,什么是圆的周长?(板书课题。)
学生:圆一周的长度叫圆的周长。
教师:圆的周长与我们之前学习过的图形的周长有什么区别?
学生:以前我们研究的图形都是由直线围成的,而圆是由曲线围成的。
2.合理猜想,确定方向。
教师:圆的周长与圆的什么有关?
学生:直径、半径。
教师:圆的周长是直径的几倍?
学生:……
教师:怎么验证你的猜测呢?
学生:量一量,算一算。
【设计意图】呈现生活情境,引导学生直观感悟什么是圆的周长。因势利导展开猜测,确定研究方向。
(二)设计方案,展开探究
1.探讨设计方案。
(1)如何化曲为直?
教师:圆是曲线图形,尺子是直的,怎么办?
学生:滚一滚,绕一绕……
(2)如何减少误差?
教师:测量结果可能不准确,有什么办法尽量准确一点呢?
学生1:多量几次,选出现次数量多的数据。
学生2:用计算器计算,提高正确率。
教师:除不尽怎么办?
学生1:用分数表示。
学生2:取近似数。
教师:一般保留两位小数,比较方便。
【设计意图】圆与学生以前学习的图形有本质的区别――它是曲线图形,如何化曲为直,学生根据生活经验或预习知道用滚或绕的方法可以解决度量的问题。但如何提高准确性,遇到除不尽怎么办,这些问题对老师而言可能不是问题,对于学生而言却是陌生的,教师对此必须有充分的预设。通过讨论统一认识,为下面的实验扫除障碍。
2.操作获取数据。
小组合作测量数据,计算圆的周长与直径的比值,结果保留两位小数。
物品名称
周长
直径
周长与直径的比值
(三)交流讨论,提升认识
1.交流质疑。
(1)小组汇报,教师直接将结果输入电脑。
【设计意图】在授课的多媒体课件中插入了控件,学生测量和计算的结果在播放状态就可以直接输入,既增加了数据的真实性,增强了授课的互动与趣味性,又便于开展讨论。
(2)质疑不同数据。
教师:为什么测量计算的结果不相同?
学生1:测量有误差,绳子绕的松紧程度不同。
学生2:尺子不够精确,不到一毫米只能估计。
教师:是不是尺子再精确一点,测量结果就准确无误?
教师:有没有其他的方法?
教师:有没有唯一的得数?
【设计意图】讨论是必须的,对于学生的困惑不能以书本、师道尊严压服,教师应让学生畅所欲言,只有理解测量的局限性,才更能理解圆周率的特殊性。
2.概括小结。
(1)圆周率的意义及读写。(课件出示内容。)
任意一个圆的周长与它的直径的比值是一个固定不变的数,我们把它叫做圆周率,用字母表示。它是一个无限不循环小数,≈3.……但在实际应用中常常只取它的近似值,例如≈3.14。
(2)概括周长计算公式。
如果用C表示圆的周长,就有C=d或C=2r。
(四)联系实际,解决问题
1.例题教学。
(1)出示教材第64页例1。
一辆自行车轮子的半径大约是33 cm,这辆自行车轮子转1圈,大约可以走多远?(结果保留整米数。)小明家离学校1 km,骑车从家到学校,轮子大约转了多少圈?
(2)学生尝试解答。
(3)规范书写。
C=2r
2×3.14×33=207.24(cm)≈2(m)
1000÷2=500(圈)
答:这辆自行车轮子转1圈,大约可以走2 m。小明骑车从家到学校,轮子大约转了500圈。
2.巩固练习。
(1)求下面各圆的'周长。
①2×3.14×3=18.84(cm);
②3.14×6=18.84(cm);
③2×3.14×5=31.4(cm)。
(2)解决问题。
①一个圆形喷水池的半径是5 m,它的周长是多少米?
2×3.14×5=31.4(米)
答:它的周长是31.4米。
②小红量得一个古代建筑中的大红圆柱的周长是3.77 m。这个圆柱的直径是多少米?(得数保留一位小数。)
3.77÷3.14≈1.2(米)
答:这个圆柱的直径大约是1.2米。
【设计意图】在练习中直接加入已知周长求直径的问题,是为了培养学生的逆向思维能力。在练习时可以追问学生:已知周长怎样求半径?防止学生形成思维定势。
(五)课堂小结,拓展延伸
1.这节课你有什么收获?说一说圆的周长与直径的关系。
2.介绍中国古代对圆周率的研究及伟大成就。
【设计意图】对圆周率的研究体现了中国古代数学的高度成就,是对学生进行爱国主义教育的绝佳机会,同时也要让学生感受到现代科技的日新月异,从小树立勇攀科学高峰的科学精神。