下面是小编给大家整理的九年级数学下册教学计划(共含19篇),欢迎大家借鉴与参考,希望对大家有所帮助。同时,但愿您也能像本文投稿人“心随风飘”一样,积极向本站投稿分享好文章。
篇1:九年级数学下册教学计划
一、学情分析
从九年级上册期末检测的情况来看,我教的这个毕业班的数学成绩较前期略有上升,合格率、优秀率均完成开学初制定的教学目标,但人均分未能达到预期的分数。因为是毕业班,绝大部分学生都能静下心来认真学习,但是也有小部分学生因为基础差、成绩差,完全是抱着自我放弃的心态,过着混日子的生活。在一定程度上也影响了一部分成绩处于中等偏下的学生,造成两极分化的现象较前期要严重很多,直接后果就是人均分下降。
但是值得肯定的是,本届毕业班的目标学生对自己的要求很严格,对于数学学习中遇到的困难能够积极主动地想办法予以解决,或合作探究、或组队前来提问。尤其是处于分数线上下的学生特别刻苦,能自觉利用一切可以利用的课余时间去钻研数学问题,多做多练。这对于九年级下册新课结束后的中考复习具有非常积极的意义。
二、指导思想
坚持党的教育方针,贯彻新课程改革的精神,结合《初中数学新课程标准》和学生的实际情况,潜心钻研教材、钻研考标,收集本地最新的中考动态和中考数学有关信息、把握中考数学命题的趋势。
教学过程中坚持做到提高课堂教学效率,向45分钟要质量。特别是新课结束后的复习教学,既要注重夯实学生的基础知识,更要注重提升学生知识运用的能力,加强对学生解题、做题能力的训练,重视对学生思维发散的培养。使整个复习都围绕学生的中考进行,做到有的放矢,对症下药。
三、教学目标
知识技能目标:掌握二次函数的三种表达式,会画二次函数的图象,理解二次函数的性质;能利用习题或实际问题中给出的条件运用待定系数法求二次函数的解析式;能将简单的实际问题抽象为二次函数问题并加以解决。通过探究,掌握圆的各种特点和性质,能运用圆的性质和判定进行简单的计算和证明。理解抽样调查的意义,能借助抽样调查进行简单的数据分析,并根据分析的结果对调查结果进行处理。
过程方法目标:重点发展学生的图形观察能力,分析能力和理解能力;进一步发展学生逻辑思维能力;训练学生把实际问题抽象为数学问题的能力。通过二次函数的综合应用进一步培养学生数形结合的思维建模。
态度情感目标:激发学生学习数学的兴趣,既要培养树立学生团结协作的精神,又要培养学生独立自主学习的主动性和钻研探究精神;培养学生发现问题,探究问题和解决问题的能力,并从中体会学习数学的乐趣。
班级教学目标:优秀10人,及格30人,人平分60分(全班共49人),完成学校交给的中考目标培养任务。
四、教材分析
1、新授内容分析
第二十七章:二次函数
本章通过实际问题情境的分析导入二次函数的表达式,体会二次函数的意义,进而学习画二次函数图象,并通过图象探究二次函数的性质,掌握二次函数图象的开口方向、顶点坐标、对称轴和最值,并学会抽象实际问题中的函数关系,利用二次函数解决简单的实际问题。本章重点是掌握二次函数的性质,会用待定系数法求二次函数解析式。难点是运用二次函数的性质解决简单的实际问题。
第二十八章:圆
本章由认识圆引出圆有关的概念,进而探究圆的有关性质,包括圆的对称性、垂径定理、圆周角的有关性质。在此基础上再探究与圆有关的位置关系,包括点、直线和圆三者与圆的位置关系,并重点探究切线的性质和判定及应用,最后学习圆中有关的计算,包括弧长、扇形面积和圆锥的有关计算。本章内容多、概念多、性质多,在讲清概念的基础上重点抓住垂径定理、圆周角的性质和切线的判定与性质。难点是灵活运用垂径定理、圆周角的性质和切线的判定与性质,以及圆中的计算,特别是圆锥的有关计算。
第二十九章:几何的回顾
本章主要内容是学习几何证明的方法、步骤,理解几何证明的必要性,掌握综合法证明的格式,体会几何证明过程的每一步都要有根有据。同时了解反证法的含义及证明思路。本章教学的重点是教会学生规范书写几何证明的过程,培养学生学会观察几何图形,分析几何图形中的角、线段及图形本身具有的特殊性质、关系,理清思路,从而完成证明过程。难点是做到规范而完整的书写几何证明的过程。
第三十章:样本与总体
本章通过让学生亲身体验收集和处理数据的全过程,体会数据在决策中的作用,从而发展学生的统计观念,使学生能从统计的角度思考与数据信息有问的问题,掌握收集数据、描述数据、分析数据的过程与方法,认识到统计在生活中的重要作用,并能做到对简单问题的数据收集、分析和运用。
2、复习内容分析
本学期除了要完成新授内容,还要进行中考总复习,关于这部分内容将单独制定相关的复习计划,本文就不列出来了。
五、教学措施
1、课前对教材进行认真细致的阅读,针对新课标的要求选取合适的教学素材,根据学生的实际情况制定教学设计方案。
2、授课过程中既要传授数学知识,同时又要注重培养学生的学习能力,尤其是观察能力、分析能力、及运用数学知识的能力。
3、写好课后总结和阅卷笔记,认真分析每节课的成败得失,并从中汲取经验,反思教训。
4、加强对学生的课后辅导,并建立学生数学学习档案,以便分析学生的特点,在辅导过程采取针对性的措施。
5、举行单元测试和阶段测试,了解学生的学习状况,对学生中存在的问题进行全面或者个人指导。
6、关于中考数学复习将另行制定复习计划,相关内容本文就不列出来了。
六、课时安排
请根据自己的教学实际情况和学生学习的实际情况制定适当的课时计划。
篇2:九年级数学下册年度教学计划
20xx年转眼来临,本学年既有新任务要完成还有复习更要兼顾,因此事非常重要的一个学期,要以培养学生创新精神和实践能力为重点,探索有效教学新模式。以课堂教学为中心,紧紧围绕初中数学教材、数学学科“基本要求”进行教学,针对近年来中考命题的变化和趋势进行研究,收集试卷,精选习题,建立题库,努力把握中考方向,积极探索高效的复习途径,力求达到减负、加压、增效的目的,促进学生生动、活泼、主动地学习,力求中考取得好成绩。通过数学课的教学,使学生切实学好从事现代化建设和进一步学习所必须的基本知识和基本能力,在思维能力、情感态度与价值观等多方面得到进步和发展。
一、学情分析:
本学年我带九年级三、四两个班,学生上学期成绩很不理想,两极分化越来越严重。有部分学生成绩下滑很明显,学习习惯较差。做事慢慢腾腾,有几个学生应该考优生的学生都没有考到优生,如梁磊、刘子玉、刘婕、陈晓、麻乃芹等,这些也许是老师督导不到位,也有少数学生自制能力较差,对自己要求不严,甚至自暴自弃。这些都需要针对不同情况采取相应措施,耐心教育。
二、教材分析:
本学期的新内容只剩两章:解直角三角形和投影。
三、教学目标:
在教学过程中抓住以下几个环节:
(1)认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。
(2)上好课:在备好课的.基础上,上好每一个45分钟,提高45分钟的效率,让每一位同学都听的懂,对部分基础较差者要循序渐进,以选用的例题的难易程度不同,使每个学生能“吃”饱、“吃”好。
(3)注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。
(4)批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。
(5)按时检验学习成果,做到单元测验的有效、及时,测验卷子的批改不过夜。考后对典型错误利用学生想马上知道答案的心理立即点评。
(6)及时指导、纠错:争取面批、面授,今天的任务不推托到明日,争取一切时间,紧紧抓住初三阶段的每分每秒。课后反馈。落实每一堂课后辅助,查漏补缺。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。
(7)积极与其它老师沟通,加强教研教改,提高教学水平。
(8)经常听取学生良好的合理化建议。
(9)以“两头”带“中间”战略思想不变。
(10)深化两极生的训导。
四、严格按照教学进度,有序的进行教学工作。
用心去做,从细节去做,尽自己追大的努力,发挥自己最大的能力去做好初三毕业班的教学工作。
五、强化复习指导。
分二阶段复习:
(一)第一阶段全面复习基础知识,加强基本技能训练让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。
这个阶段的复习目的是让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。
1、重视课本,系统复习。现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造,后面的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是教材中题目的引伸、变形或组合,所以第一阶段复习应以课本为主。
2、按知识板块组织复习。把知识进行归类,将全初中数学知识分为十一讲:
第一讲数与式。
第二讲方程与不等式。
第三讲函数。
第四讲统计与概率。
第五讲基本图形。
第六讲图形与变换。
第七讲角、相交线和平行线。
第八讲三角形。
第九讲四边形。
第十讲三角函数学。
第十一讲圆。
复习中由教师提出每个讲节的复习提要,指导学生按“提要”复习,同时要注意引导学生根据个人具体情况把遗忘了知识重温一遍,边复习边作知识归类,加深记忆,注意引导学生弄清概念的内涵和外延,掌握法则、公式、定理的推导或证明,例题的选择要有针对性、典型性、层次性,并注意分析例题解答的思路和方法。
3、重视对基础知识的理解和基本方法的指导。基础知识即初中数学课程中所涉及的概念、公式、公理、定理等。要求学生掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,并能综合运用。例如一元二次方程的根与二次函数图形与x轴交点之间的关系,是中考常常涉及的内容,在复习时,应从整体上理解这部分内容,从结构上把握教材,达到熟练地将这两部分知识相互转化。又如一元二次方程与几何知识的联系的题目有非常明显的特点,应掌握其基本解法。
中考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法,换元法,判别式法等操作性较强的数学方法。在复习时应对每一种方法的内涵,它所适应的题型,包括解题步骤都应熟练掌握。
4、重视对数学思想的理解及运用。如函数的思想,方程思想,数形结合的思想等。
(二)第二阶段综合运用知识,加强能力培养,构建初中数学知识结构和网络,从整体上把握数学内容,以构建初中数学知识结构和网络为主,从整体上把握数学内容,提高能力。
培养综合运用数学知识解题的能力,是学习数学的重要目的之一。这个阶段的复习目的是使学生能把各个讲节中的知识联系起来,并能综合运用,做到举一反三、触类旁通。这个阶段的例题和练习题要有一定的难度,但又不是越难越好,要让学生可接受,这样才能既激发学生解难求进的学习欲望,又使学生从解决较难问题中看到自己的力量,增强前进的信心,产生更强的求知欲。第二阶段就是第一阶段复习的延伸和提高,应侧重培养学生的数学能力。这一阶段尤其要精心设计每一节复习课,注意数学思想的形成和数学方法的掌握。初中总复习的内容多,复习必须突出重点,抓住关键,解决疑难,这就需要充分发挥教师的主导作用。而复习内容是学生已经学习过的,各个学生对教材内容掌握的程度又各有差异,这就需要教师千方百计地激发学生复习的主动性、积极性,引导学生有针对性的复习,根据个人的具体情况,查漏补缺,做知识归类、解题方法归类,在形成知识结构的基础上加深记忆。除了复习形式要多样,题型要新颖,能引起学生复习的兴趣外,还要精心设计复习课的教学方法,提高复习效益
六、不断钻研业务,提高业务能力及水平。
积极参加业务学习,看书、看报,参加学校组织的培训,使之更好的为基础教育的改革努力,掌握新的技能、技巧,不断努力,取长补短,扬长避短,努力使教学更开拓,方法更灵活,手段更先进。
篇3:九年级下册数学教学计划
一、教学背景:
为了加强课堂教学,完善教学常规,能够保证教学的顺利开展,完成初中最后一学期的数学教学,使之高效完成学科教学任务制定了本教学计划。
二、学情分析:
这学期我所带的班级仍是九年级1002班兼班主任,基础知识水平较好,成绩较为一般。查漏补缺,特别是多关心、鼓励他们,让这些基础过差的学生能努力掌握一部分简单的知识,提高他们的学习积极性,建立一支有进取心、能力较强的学习队伍,让全体同学都能树立明确的数学学习目的,形成良好的数学学习氛围。
三、新课标要求:
初三数学是按照九年义务教育数学课程标准来实施的,其目的是通过数学教学使每个学生都能够在学习过程中获得最适合自己的发展。通过初三数学的教学,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度,顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。
四、本学期学科知识在整个体系中的位置和作用:
本册书的4章内容涉及《数学课程标准》中“数与代数”“空间与图形”和“实践与综合应用”三个领域的内容,其中第26章“二次函数”和第28章“锐角三角函数”的内容,都是基本初等函数的基础知识,属于“数与代数”领域。
然而,它们又分别与抛物线和直角三角形有密切关系,即这两章内容既涉及数量关系问题,又涉及图形问题,能够很好地反映数形结合的数学思想和方法。第27章“相似”的内容属于“空间与图形”领域,其内容以相似三角形为核心,此外还包括了“位似”变换。
在这一章的最后部分,安排了对初中阶段学习过的四种图形变换(平移、轴对称、旋转和位似)进行归纳以及综合运用的问题。第29章“投影与视图”也属于“空间与图形”领域,这一章是应用性较强的内容,它从“由物画图”和“由图想物”两个方面,反映平面图形与立体图形的相互转化,对于培养空间想象力能够发挥重要作用。
对于“实践与综合应用”领域的内容,本套教科书除在各章的正文和习题部分注意安排适当内容之外,还采用了“课题学习”“数学活动”等编排方式加强对数学应用的体现。本册书的第29章安排了一个课题学习“制作立体模型”,并在每一章的最后安排了2~3个数学活动,通过这些课题学习和数学活动来落实与本册内容关系密切的“实践与综合应用”方面的要求。
五、具体时间安排
1、第一阶段新课
时间:2月25日—3月10日
主要研究直线与圆的位置关系和圆与圆的位置关系;用圆的知识解决实际问题。第四章《统计与概率》分为两节,主要内容包括:概率的进一步学习和几种统计图。
2、第一阶段复习
复习时间:3月11日—4月10日
复习宗旨:重双基训练,知识系统化,练习专题化,专题规律化。在这一阶段的教学把书中的内容进行归纳、整理、组块,使之形成结构,使学生掌握每个章节的知识点,熟练解答各类基础题,对每个章节进行测验,检测学生掌握程度。
复习内容:实数、代数式、方程、不等式、函数、统计与概率、几何基本概念,相交线和平行线、三角形、四边形、相似三角形、解直角三角形、圆、图形的变换、视图与投影、图形的展开与折叠。以配套练习为主,复习完每个单元进行一次单元测试,重视补缺工作。
第二阶段复习
复习时间:4月11日—5月10日
复习宗旨:在第一阶段复习的基础上延伸和提高,侧重培养学生的数学应用能力。重点进行专题复习及综合题的训练。针对不断变化的中考,必须加强考试的动态研究,以此指导我们的升学复习,抓好专题复习研究。在课堂教学上要注意教给学生的学法指导,让学生对知识的掌握和应用,做到举一反三,得心应手。
复习内容:方程型综合问题、应用性的函数题、不等式应用题、统计类的应用题、几何综合问题、探索性应用题、开放题、阅读理解题、方案设计、动手操作等,对这些内容进行专题复习,以便学生熟悉、适应这类题型。
3、第三阶段复习
复习时间:5月11日—6月25日
复习宗旨:模拟中考的综合训练,查漏补缺。
复习内容:研究历年的中考题,训练答题技巧、考场心态、临场发挥的能力等。
篇4:九年级下册数学教学计划
本学期担任初三的数学教学工作,工作中有得也有失,现反思如下:
一、教育教学中的得:
1、能制定正确教学目标:
平时教学中,不仅根据教学大纲的要求更注重多数学生的学习基础、水平制定教学目标。根据班级实际情况,我把平时的教学目标要求定在中等偏下水平,重点内容适当提高,使素质高的学生能取得较好成绩,对于基础太差的学生,对他们的复习目标只要求达到教学大纲的最基本的要求,强调熟记重要的概念、定理、公式等基础知识,并能掌握基础题的基本解法。通过努力,使全班学生的数学成绩均有所提高。
2、寓复习于平时教学过程中:
为了完成复习任务,又要减轻学生在集中复习时间的负担,我把复习内容有计划地分散在平时学习中。从初三开始教学就有目的地回顾总结。复习了与初三知识相关联的初一、初二年级的重要数学知识,结合教材,因势利导进行复习。平时在课堂复习、提问、小测验、有目的的检查复习初一、初二等知识点。这样做能使初一、初二等已学过的重要知识反复在学生头脑中出现,可以减少遗忘率。
3、编写切合学生实际的训练题:
目前初三学生每人手中均有学习资料,这些资料中基础知识偏少,较难的题目偏多,解题方法着重技巧性而不突出基本思路和方法,总的情况是要求偏高、偏深,脱离我校学生的实际,也不符合我校的学习要求。因此平时在备课中我注意重点备好学生的练习及复习训练题。布置作业做到了有布置就一定有批改,提高了学生的作业质量.自编习题要求中等偏下,多数题目是基本训练,重点题型反复训练,逐步提高,达到了预期的教学效果。
4、注重课堂教学信息的及时反馈和矫正:
由于学生之间思维的差异及基础知识掌握的差异特别大,给课堂教学带来了很大的难度,因此课堂教学必须从学生实际水平出发,分层次、有针对性地进行复习指导,最终使不同层次的学生通过复习学习达到不同水平。因此我在课堂教学中,注重了解学生的思维过程,对于学生回答的问题要进一步追问,对学生做的选择题和填空题的答案要进一步追问为什么。课堂教学中对学生的练习及时给予积极的评价,提高学生的内驱力,同时及时矫正学生中存在的问题,这样既加深了对知识的理解,同时又使学生及时纠正错误,达到复习的基本要求。
二、教学工作的失:
错误的估计了学生的学习情况,乐观的认为学生的学习过程及作业过程是正常化的,结果导致走了一段弯路。在初三数学教学过程中,为了赶教学进度,因此课堂教学中还是出现了讲的多、练的少的现象。没有很好的把握教育管理与初三数学教学的关系。平时在初三数学教学中花的时间较少,特别是后进生的辅导工作没有真正落到实处。有时对存在问题讲道理多了,具体辅导工作少了。章节考试及模拟考试注重了学生的得分情况分析,对学生知识缺漏情况少了统计及分析,少了针对性的评讲,更少了针对性的进行跟踪训练及检查。
三、三阶段复习的做法:
1、注重了课本知识,进行了查漏补缺。全面复习基础知识,加强基本技能训练的第一阶段的复习工作我们已经结束后,在第二阶段的复习中,反思和总结上一轮复习中的遗漏和缺憾,会发现有些知识还没掌握好,解题时还没有思路,因此要做到边复习边将知识进一步归类,加深记忆;还要进一步理解概念的内涵和外延,牢固掌握法则、公式、定理的推导或证明,进一步加强解题的思路和方法;同时还要查找一些类似的题型进行强化训练,要及时有目的有针对性的补缺补漏,直到自己真正理解会做为止,决不要轻易地放弃。
另外,现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造了的题,有的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是课本中题目的引申、变形或组合,课本中的例题、练习和作业题不仅要理解,而且一定还要会做。同时,对课本上的《阅读材料》《课题研究》《做一做》《想一想》等内容,我们也一定要引起重视。
2、注重了课堂学习,提高了学习效率。在任课老师的指导下,通过课堂教学,要求同学们掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,通过对基础知识的系统归纳,解题方法的归类,在形成知识结构的基础上加深记忆,至少应达到使自己准确掌握每个概念的含义,把平时学习中的模糊概念搞清楚,使知识掌握的更扎实的目的,要达到使自己明确每一个知识点在整个初中数学中的地位、联系和应用的目的。上课要会听课,会记录,必须要把握每一节课所讲的知识重点,抓住关键,解决疑难,提高学习效率,根据个人的具体情况,课堂上及时查漏补缺。
3、夯实了基础知识,学会思考。在历年的数学中考试题中,基础分值占的最多,再加上部分中档题及较难题中的基础分值,因此所占分值的比例就更大。扎扎实实地夯实基础,通过系统的复习,我们对初中数学知识达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。
4、注意了知识的迁移,学会融会贯通。课本中的某些例题、习题,并不是孤立的,而是前后联系、密切相关的,其他学科的知识也和数学有着千丝万缕的联系,我们要学会从思维发展的最近点出发,去发现、研究和展示这些知识的内在联系,这样做不仅有助于自己深刻理解课本知识,有利于强化知识重点,更重要的是能有效地促进自己数学知识网络和方法体系的构建,使知识和能力产生良性迁移,达到触类旁通的效果,通过探究课本典型例题、习题的内在联系,让我们在深刻理解课本知识的同时,更有效地形成知识网络与方法体系。例如一元二次方程的根的判别式,不但可以解决根的判定和已知根的情况求字母系数,还可以解决二次三项式的因式分解、方程组的根的判定及二次函数图象与横轴的交点坐标。
5、复习形成了梯度,选择典型习题。如果说第一阶段是中考复习的基础,是重点,侧重了双基训练,那么第二阶段的复习就是第一阶段复习的延伸和提高,这个阶段的练习题要选择有一些难度的题,但又不是越难越好,难题做的越多越好,做题要有典型性,代表性,所选择的难题是自己能够逐步完成的,这样才能既激发自己解难求进的学习欲望,又能使自己从解决较难问题中看到自己的力量,增强学习的信心,产生更强的求知欲望。
6、重视基础知识,注重解题方法。基础知识就是初中数学课程中所涉及的概念、公式、公理、定理等。要求同学们掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,并能综合运用。每年的中考数学会出现一两道难度较大,综合性较强的数学问题,解决这类问题所用到的知识都是同学们学过的基础知识,并不依赖于那些特别的,没有普遍性的解题技巧。
四、今后的教学思路:
(一)进一步激发学生的学习动机,培养学生良好的学习习惯
(二)融洽师生情感,提供平等的学习机会,诚心实意的为学生提供优质的服务。
(三)健全学生完整的知识结构。一方面加强基础知识教学,注重抓盲点,,另一方面重视解题模式的总结,注意突破难点,这是数学学习的关键。
(四)切实做好提优补差工作。对后进生格外关心,注意辅导其学习方法,并针对其学习上的缺漏予以辅导纠正,做好测验及模拟考试中成绩不理想的学生知识缺漏情况的统计及分析,进行针对性的评讲,并进行针对性的跟踪训练和检查.
(五)继续贯彻学校领导的工作决策,不断注重教育教学的理论学习,使之教学质量有所提高。
(六)进一步发扬教学工作中的优点,改正过去工作的不足,虚心学习,不断提高运用多媒体辅助教学的能力,扩大课堂教学容量。
篇5:九年级数学下册教学计划
一、教学背景:
为了加强课堂教学,完善教学常规,能够保证教学的顺利开展,完成初中最后一学期的数学教学,使之高效完成学科教学任务制定了本教学计划。
二、学情分析:
这学期我所带的班级仍是九年级1002班兼班主任,基础知识水平较好,成绩较为一般。查漏补缺,特别是多关心、鼓励他们,让这些基础过差的学生能努力掌握一部分简单的知识,提高他们的学习积极性,建立一支有进取心、能力较强的学习队伍,让全体同学都能树立明确的数学学习目的,形成良好的数学学习氛围。
三、新课标要求:
初三数学是按照九年义务教育数学课程标准来实施的,其目的是通过数学教学使每个学生都能够在学习过程中获得最适合自己的发展。通过初三数学的教学,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度,顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。
四、本学期学科知识在整个体系中的位置和作用:
本册书的4章内容涉及《数学课程标准》中“数与代数”“空间与图形”和“实践与综合应用”三个领域的内容,其中第26章“二次函数”和第28章“锐角三角函数”的内容,都是基本初等函数的基础知识,属于“数与代数”领域。然而,它们又分别与抛物线和直角三角形有密切关系,即这两章内容既涉及数量关系问题,又涉及图形问题,能够很好地反映数形结合的数学思想和方法。第27章“相似”的内容属于“空间与图形”领域,其内容以相似三角形为核心,此外还包括了“位似”变换。在这一章的最后部分,安排了对初中阶段学习过的四种图形变换(平移、轴对称、旋转和位似)进行归纳以及综合运用的问题。
第29章“投影与视图”也属于“空间与图形”领域,这一章是应用性较强的内容,它从“由物画图”和“由图想物”两个方面,反映平面图形与立体图形的相互转化,对于培养空间想象力能够发挥重要作用。对于“实践与综合应用”领域的内容,本套教科书除在各章的正文和习题部分注意安排适当内容之外,还采用了“课题学习”“数学活动”等编排方式加强对数学应用的体现。本册书的第29章安排了一个课题学习“制作立体模型”,并在每一章的最后安排了2~3个数学活动,通过这些课题学习和数学活动来落实与本册内容关系密切的“实践与综合应用”方面的要求。
五、具体时间安排
1、第一阶段新课
时间:2月25日――3月10日
主要研究直线与圆的位置关系和圆与圆的位置关系;用圆的知识解决实际问题。第四章《统计与概率》分为两节,主要内容包括:概率的进一步学习和几种统计图。
2、第一阶段复习
复习时间:3月11日――4月10日
复习宗旨:重双基训练,知识系统化,练习专题化,专题规律化。在这一阶段的教学把书中的内容进行归纳、整理、组块,使之形成结构,使学生掌握每个章节的知识点,熟练解答各类基础题,对每个章节进行测验,检测学生掌握程度。
复习内容:实数、代数式、方程、不等式、函数、统计与概率、几何基本概念,相交线和平行线、三角形、四边形、相似三角形、解直角三角形、圆、图形的变换、视图与投影、图形的展开与折叠。以配套练习为主,复习完每个单元进行一次单元测试,重视补缺工作。
第二阶段复习
复习时间:4月11日――5月10日
复习宗旨:在第一阶段复习的.基础上延伸和提高,侧重培养学生的数学应用能力。重点进行专题复习及综合题的训练。针对不断变化的中考,必须加强考试的动态研究,以此指导我们的升学复习,抓好专题复习研究。在课堂教学上要注意教给学生的学法指导,让学生对知识的掌握和应用,做到举一反三,得心应手。
复习内容:方程型综合问题、应用性的函数题、不等式应用题、统计类的应用题、几何综合问题、探索性应用题、开放题、阅读理解题、方案设计、动手操作等,对这些内容进行专题复习,以便学生熟悉、适应这类题型。
总结:以上就是本学期的数学教学计划,希望能对你有所帮助,如有不足之处,请批评指正!
篇6:九年级下册数学教学计划
一、教学背景:
为了加强课堂教学,完善教学常规,能够保证教学的顺利开展,完成初中最后一学期的数学教学,使之高效完成学科教学任务制定了本教学计划。
二、学情分析:
这学期我所带的班级仍是九年级1002班兼班主任,基础知识水平较好,成绩较为一般。查漏补缺,特别是多关心、鼓励他们,让这些基础过差的学生能努力掌握一部分简单的知识,提高他们的学习积极性,建立一支有进取心、能力较强的学习队伍,让全体同学都能树立明确的数学学习目的,形成良好的数学学习氛围。
三、新课标要求:
初三数学是按照九年义务教育数学课程标准来实施的,其目的是通过数学教学使每个学生都能够在学习过程中获得最适合自己的发展。通过初三数学的教学,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算, 逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度,顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。
四、本学期学科知识在整个体系中的位置和作用:
本册书的4章内容涉及《数学课程标准》中“数与代数”“空间与图形”和“实践与综合应用”三个领域的内容,其中第26章“二次函数”和第28章“锐角三角函数”的内容,都是基本初等函数的基础知识,属于“数与代数”领域。然而,它们又分别与抛物线和直角三角形有密切关系,即这两章内容既涉及数量关系问题,又涉及图形问题,能够很好地反映数形结合的数学思想和方法。第27章“相似”的内容属于“空间与图形”领域,其内容以相似三角形为核心,此外还包括了“位似”变换。在这一章的最后部分,安排了对初中阶段学习过的四种图形变换(平移、轴对称、旋转和位似)进行归纳以及综合运用的问题。第29章“投影与视图”也属于“空间与图形”领域,这一章是应用性较强的内容,它从“由物画图”和“由图想物”两个方面,反映平面图形与立体图形的相互转化,对于培养空间想象力能够发挥重要作用。对于“实践与综合应用”领域的内容,本套教科书除在各章的正文和习题部分注意安排适当内容之外,还采用了 “课题学习”“数学活动”等编排方式加强对数学应用的体现。本册书的第29章安排了一个课题学习“制作立体模型”,并在每一章的最后安排了2~3个数学活动,通过这些课题学习和数学活动来落实与本册内容关系密切的“实践与综合应用”方面的要求。
五、四个单元章节:
第26章 二次函数
本章主要研究二次函数的概念、图象和基本性质,用二次函数观点看一元二次方程,用二次函数分析和解决简单的实际问题等。这些内容分为三节安排。
第27章 相似
本章的主要内容包括相似图形的概念和性质,相似三角形的判定,相似三角形的应用举例和位似变换等。此前学习的全等是图形之间的一种特殊关系,而本章学习的相似是比全等更具一般性的图形之间的关系。全等可以被认为是特殊的相似(相似比为1),对于全等的认识是学习相似的重要基础。
第28章锐角三角函数
本章主要内容包括:锐角三角函数(正弦、余弦和正切),解直角三角形。锐角三角函数是自变量为锐角时的三角函数,即缩小了定义域的后的三角函数。解直角三角形在实际当中有着广泛的应用,锐角三角函数为解直角三角形提供了有效的工具。相似三角形的知识是学习锐角三角函数的直接基础,勾股定理等内容也是解直角三角形时经常使用的数学结论,因此本章与第18章“勾股定理”和第27章“相似”有密切关系。
第29章 投影与视图
本章的主要内容包括投影和视图的基础知识,一些基本几何体的三视图,简单立体图形与它的三视图的相互转化,根据三视图制作立体模型的实践活动。全章分为三节。
七、阶段性测试或检查方式及辅导措施:
(1)注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。
(2)批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。
(3)按时检验学习成果,做到单元测验的有效、及时,测验卷子的批改不过夜。考后对典型错误利用学生想马上知道答案的心理立即点评。
(4)及时指导、纠错:争取面批、面授,今天的任务不推托到明日,争取一切时间,紧紧抓住初三阶段的每分每秒。课后反馈。落实每一堂课后辅助,查漏补缺。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。
(5)积极与其它老师沟通,加强教研教改,提高教学水平。
(6)经常听取学生良好的合理化建议。
(7)以“两头”带“中间”战略思想不变。
(8)深化两极生的辅导。
八、教学进度安排:
第一周: 讲评期末试卷 第二十六章 二次函数(1)(2)
第二周: 26.2 二次函数的应用
第三周: 26.2 二次函数的应用 26.3 课题学习建立函数模型
第四周: 综合小复习单元测试及讲评
第五周: 第二十七章 相似 27.1 相似形
第六周: 27.2 相似三角形
第七周: 27.2 相似三角形
第八周: 27.3 相似多边形
第九周: 小复习单元测试及讲评
第十周: 期中考试 讲评试题
第十一周: 二十八章 锐角三角函数 28.1 锐角三角函数
第十二周: 28.2 解直角三角形
第十三周: 小复习单元测试及讲评
第十四周: 第二十九章 视图与投影 29.1 三视图
第十五周: 29.1 三视图 29.2 展开图
第十六周: 综合复习
第十七周: 安排中考
篇7:九年级下册数学教学计划
教学目标
【知识与技能】
使学生能利用描点法作出函数y=ax2+k的图象.
【过程与方法】
让学生经历二次函数y=ax2+k的性质探究的过程,理解二次函数y=ax2+k的性质及它与函数y=ax2的关系,培养学生观察、分析、猜测并归纳、解决问题的能力.
【情感、态度与价值观】
培养学生敢于实践、勇于发现、大胆探索、合作创新的精神.
重点难点
【重点】
会用描点法画出二次函数y=ax2+k的图象,理解二次函数y=ax2+k的性质,理解函数y=ax2+k与函数y=ax2的相互关系.
【难点】
正确理解二次函数y=ax2+k的性质,理解抛物线y=ax2+k与抛物线y=ax2的关系.
教学过程
一、问题引入
1.二次函数y=2x2的图象是,它的开口向,顶点坐标是,对称轴是,在对称轴的左侧,y随x的增大而;在对称轴的右侧,y随x的增大而.函数y=ax2在x=时,取最值,其最值是.
2.抛物线y=x2+1,y=x2-1的开口方向、对称轴和顶点坐标各是什么?
3.抛物线y=x2+1,y=x2-1与抛物线y=x2有什么关系?
二、新课教授
问题1:对于前面提出的第2、3个问题,你将采取什么方法加以研究?
(画出函数y=x2+1、y=x2-1和函数y=x2的图象,并加以比较.)
问题2:你能在同一直角坐标系中画出函数y=x2+1与y=x2的图象吗?
师生活动:
学生回顾画二次函数图象的三个步骤,按照画图的步骤画出函数y=x2+1、y=x2的图象,观察、讨论并归纳.
教师写出解题过程,与学生所画的图象进行比较,帮助学生纠正错误.
解:(1)列表:
x…-3-2-10123…
y=x2…9410149…
y=x2+1…105212510…
(2)描点:用表格中各组对应值作为点的坐标,在平面直角坐标系中描点.
(3)连线:用光滑曲线顺次连接各点,得到函数y=x2和y=x2+1的图象.
问题3:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?
师生活动:
教师引导学生观察上表并思考,当x依次取-3、-2、-1、0、1、2、3时,两个函数的函数值之间有什么关系?
学生观察、讨论、归纳得:当自变量x取同一数值时,函数y=x2+1的函数值比函数y=x2的函数值大1.
教师引导学生观察函数y=x2和函数y=x2+1的图象,先研究点(-1,1)和点(-1,2)、点(0,0)和点(0,1)、点(1,1)和点(1,2)的位置关系.
学生观察、讨论、归纳得:反映在图象上,函数y=x2+1的图象上的点都是由函数y=x2的图象上的相应点向上移动了一个单位.
问题4:函数y=x2+1和y=x2的图象有什么联系?
学生由问题3的探索可以得到结论:函数y=x2+1的图象可以看成是将函数y=x2的图象向上平移一个单位得到的.
问题5:现在你能回答前面提出的第2个问题了吗?
生:函数y=x2+1与函数y=x2的图象开口方向相同、对称轴相同,但顶点坐标不同,函数y=x2的图象的顶点坐标是(0,0),而函数y=x2+1的图象的顶点坐标是(0,1).
问题6:你能由函数y=x2+1的图象得到函数y=x2+1的一些性质吗?
生:当x0时,函数值y随x的增大而减小;当x0时,函数值y随x的增大而增大;当x=0时,函数取得最小值,最小值是y=1.
问题7:先在同一直角坐标系中画出函数y=2x2+1与函数y=2x2-1的图象,再作比较,说说它们有什么联系和区别.
师生活动:
教师在学生画函数图象的同时,巡视指导.学生动手画图,观察、讨论、归纳.
解:先列表:
x…-2-1.5-1-0.500.511.52…
y=2x2+1…95.531.511.535.59…
y=2x2-1…73.51-0.5-1-0.513.57…
然后描点画图,得y=2x2+1,y=2x2-1的图象.
教师让学生发表意见,归纳为:函数y=2x2+1与函数y=2x2-1的图象的开口方向、对称轴相同,但顶点坐标不同.函数y=2x2-1的图象可以看成是将函数y=2x2+1的图象向下平移两个单位得到的.
问题8:你能说出函数y=x2-1的图象的开口方向、对称轴、顶点坐标以及这个函数的性质吗?
师生活动:
教师让学生观察y=x2-1的图象.
学生动手画图,观察、讨论、归纳.
学生分组讨论这个函数的性质,各组选派一名代表发言.最后归纳总结:函数y=x2-1的图象的开口向上,对称轴为y轴,顶点坐标是(0,-1);当x0时,函数值y随x的增大而减小;当x0时,函数值y随x的增大而增大;当x=0时,函数取得最小值,最小值为y=-1.
三、巩固练习
1.在同一直角坐标系中,画出函数y=x2、y=x2+2、y=x2-2的图象.
(1)填表:
x… …
y=x2… …
y=x2+2… …
y=x2-2… …
(2)描点,连线:
【答案】略
2.观察第1题中所画的图象,并填空:
(1)抛物线y=x2+2的开口方向是,对称轴是,顶点坐标是;抛物线y=x2+2是由抛物线y=x2向平移个单位长度得到的;
(2)对于y=x2-2,当x0时,函数值y随x的增大而;当x0时,函数值y随x的增大而;
(3)对于函数y=x2,当x=时,函数取最值,为.
对于函数y=x2+2,当x=时,函数取最值,为.
对于函数y=x2-2,当x=时,函数取最 值,为 .
【答案】(1)向上 x=0 (0,2) 上 2 (2)增大 减小 (3)0 小 0 0 小 2 0 小 -2
四、课堂小结
1.函数y=ax2(a≠0)和函数y=ax2+k(a≠0)的图象形状相同,只是位置不同,把y=ax2的图象沿y轴向上(当k0时)或向下(当k0时)平移|k|个单位就得到函数y=ax2+k的图象.
2.抛物线y=ax2+k(a≠0)的性质.
(1)抛物线y=ax2+k(a≠0)的对称轴是y轴,顶点坐标是(0,k).
(2)当a0时,抛物线开口向上,并向上无限伸展;
当a0时,抛物线开口向下,并向下无限伸展.
(3)当a0时,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大.这时,当x=0时,y有最小值k.
当a0时,在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小.这时,当x=0时,y有最大值k.
教学反思
通过本节课的学习,学生做到了以下三个方面:首先,掌握函数y=ax2(a≠0)和函数y=ax2+k(a≠0)的图象形状相同,只是位置不同,把y=ax2的图象沿y轴向上(当k0时)或向下(当k0时)平移|k|个单位就得到y=ax2+k的图象;其次,能够理解a、k对函数图象的影响,初步体会二次函数关系式与图象之间的联系,渗透数形结合的思想,为今后的学习打下良好的基础;最后,形成严谨的学习态度和求简的数学精神.
篇8:九年级下册数学教学计划
一、教学背景:
为了加强课堂教学,完善教学常规,能够保证教学的顺利开展,完成初中最后一学期的数学教学,使之高效完成学科教学任务制定了本教学计划。
二、学情分析:
这学期我所带的班级仍是九年级1002班兼班主任,基础知识水平较好,成绩较为一般。查漏补缺,特别是多关心、鼓励他们,让这些基础过差的学生能努力掌握一部分简单的知识,提高他们的学习积极性,建立一支有进取心、能力较强的学习队伍,让全体同学都能树立明确的数学学习目的,形成良好的数学学习氛围。
三、新课标要求:
初三数学是按照九年义务教育数学课程标准来实施的,其目的是通过数学教学使每个学生都能够在学习过程中获得最适合自己的发展。通过初三数学的教学,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度,顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。
四、本学期学科知识在整个体系中的位置和作用:
本册书的4章内容涉及《数学课程标准》中“数与代数”“空间与图形”和“实践与综合应用”三个领域的内容,其中第26章“二次函数”和第28章“锐角三角函数”的内容,都是基本初等函数的基础知识,属于“数与代数”领域。然而,它们又分别与抛物线和直角三角形有密切关系,即这两章内容既涉及数量关系问题,又涉及图形问题,能够很好地反映数形结合的数学思想和方法。第27章“相似”的内容属于“空间与图形”领域,其内容以相似三角形为核心,此外还包括了“位似”变换。在这一章的最后部分,安排了对初中阶段学习过的四种图形变换(平移、轴对称、旋转和位似)进行归纳以及综合运用的问题。第29章“投影与视图”也属于“空间与图形”领域,这一章是应用性较强的内容,它从“由物画图”和“由图想物”两个方面,反映平面图形与立体图形的相互转化,对于培养空间想象力能够发挥重要作用。对于“实践与综合应用”领域的内容,本套教科书除在各章的正文和习题部分注意安排适当内容之外,还采用了“课题学习”“数学活动”等编排方式加强对数学应用的体现。本册书的第29章安排了一个课题学习“制作立体模型”,并在每一章的最后安排了2~3个数学活动,通过这些课题学习和数学活动来落实与本册内容关系密切的“实践与综合应用”方面的要求。
五、具体时间安排
1、第一阶段新课
时间:2月25日—3月10日
主要研究直线与圆的位置关系和圆与圆的位置关系;用圆的知识解决实际问题。第四章《统计与概率》分为两节,主要内容包括:概率的进一步学习和几种统计图。
2、第一阶段复习
复习时间:3月11日—4月10日
复习宗旨:重双基训练,知识系统化,练习专题化,专题规律化。在这一阶段的教学把书中的内容进行归纳、整理、组块,使之形成结构,使学生掌握每个章节的知识点,熟练解答各类基础题,对每个章节进行测验,检测学生掌握程度。
复习内容:实数、代数式、方程、不等式、函数、统计与概率、几何基本概念,相交线和平行线、三角形、四边形、相似三角形、解直角三角形、圆、图形的变换、视图与投影、图形的展开与折叠。以配套练习为主,复习完每个单元进行一次单元测试,重视补缺工作。
第二阶段复习
复习时间:4月11日—5月10日
复习宗旨:在第一阶段复习的基础上延伸和提高,侧重培养学生的数学应用能力。重点进行专题复习及综合题的训练。针对不断变化的中考,必须加强考试的动态研究,以此指导我们的升学复习,抓好专题复习研究。在课堂教学上要注意教给学生的学法指导,让学生对知识的掌握和应用,做到举一反三,得心应手。
复习内容:方程型综合问题、应用性的函数题、不等式应用题、统计类的应用题、几何综合问题、探索性应用题、开放题、阅读理解题、方案设计、动手操作等,对这些内容进行专题复习,以便学生熟悉、适应这类题型。
篇9:九年级下册数学教学计划
一、学情分析
经过前面五个学期的数学教学,本班学生的数学基础和学习态度已经明晰可见。通过上个学期多次摸底测试及期末检测发现,本班最大的特点是两极分化现象极为严重。虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩十分低下,厌学情绪非常严重,基本放弃对数学的学习了。其次是部分中等学生对前面所学的一些基础知识记忆不清,掌握不牢。
二、指导思想
坚持贯彻党的十七大教育方针,继续深入开展新课程教学改革。立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进行研究,积极探索高效的复习途径,夯实学生数学基础,提高学生做题解题的能力,和解答的准确性,以期在中考中取得优异的数学成绩。并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。
三、教学目标
态度与价值观:通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。知识与技能:理解二次函数的`图像、性质与应用;理解相似三角形、相似多边形的判定方法与性质,理解投影与视图在生活中的应用。掌握锐角三角函数有关的计算方法。过程与方法:通过探索、学习,使学生逐步学会正确合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。班级教学目标:中考优秀率达到30%,合格率:80%。
四、教材分析
第二十六章、二次函数
本章主要是通过二次函数图像探究二次函数性质,探讨二次函数与一元二次议程的关系,最终实现二次函数的综合应用。本章教学重点是求二次函数解析式、二次函数图像与性质及二者的实际应用。本章教学难点是运用二次函数性质解决实际问题。
第二十七章、相似
本章主要是通过探究相似图形尤其是相似三角形的性质与判定。本章的教学重点是相似多边形的性质和相似三角形的判定。本章的教学难点是相似多这形的性质的理解,相似三角形的判定的理解。
第二十八章、锐角三角函数
本章主要是探究直角三角形的三边关系,三角函数的概念及特殊锐角的三角函数值。本章的教学重点是理解各种三角函数的概念,掌握其对应的表达式,及特殊锐角三角函数值。本章的教学难点是三角函数的概念。
第二十九章、投影与视图
本章主要通过生活实例探索投影与视图两个概念,讨论简单立体图形与其三视图之间的转化。本章的重点理解立体图形各种视图的概念,会画简单立体图形的`三视图。本章教学难点是画简单立体图形的三视图。
五、方法措施
1、从学生实际情况出发,认真钻研教材教法,精心设置教学情境和教学内容,做到层次分明,帮助学生理清思路,建立数学严密的数学逻辑推理能力。
2、搞好单元测试工作,做好阅卷分析,发现问题及时纠正,同时加大课后对学生的辅导力度。
3、向有经验的老教师学习,针对近年中考命题趋势,制定详细而周密的复习计划,备好每一节复习课,力求全面而又突出重点。
4、帮助学生建立良好的数学解题作答习惯,向学生传授必要的作答技巧和适应中考的能力。
六、课时安排
九年级下册新授课程控制在4个星期内,剩余时间用于复习。
篇10:九年级下册数学教学计划
本学期是初中学习的关键时期,教学任务非常艰巨,九年级数学下册教学计划。因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。九年级毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。下面特制定以下教学复习计划。
一、学情分析
经过前面五个学期的数学教学,本班学生的数学基础和学习态度已经明晰可见。通过上个学期多次摸底测试及期末检测发现,本班最大的特点是两极分化现象极为严重。虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩十分低下,厌学情绪非常严重,基本放弃对数学的学习了。其次是部分中等学生对前面所学的一些基础知识记忆不清,掌握不牢。
二、指导思想
坚持贯彻党的十八大教育方针,继续深入开展新课程教学改革。立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进行研究,积极探索高效的复习途径,夯实学生数学基础,提高学生做题解题的能力,和解答的准确性,以期在中考中取得优异的数学成绩。并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。
三、教学内容分析
本学期,除了要完成规定的所学内容,就将开始进入初中数学总复习,将九年制义务教育数学课本教学内容分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。
在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。这些新题型在中考试题中也占有一定的位置,并且有逐年扩大的趋势。如果想在综合题以及应用性问题和开放性问题中获得好成绩,那么必须具备扎实的基础知识和知识迁移能力。因此在总复习阶段,必须牢牢抓住基础不放,对一些常见题解题中的通性通法须掌握。
学生解题过程中存在的主要问题:
(1)审题不清,不能正确理解题意;
(2)解题时自己画几何图形不会画或有偏差,从而给解题带来障碍;
(3)对所学知识综合应用能力不够;
(4)几何依然对部分同学是一个难点,主要是几何分析能力和推理能力较差。
四、教学目标
态度与价值观:通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。
知识与技能:理解二次函数的图像、性质与应用;理解相似三角形、相似多边形的判定方法与性质,理解投影与视图在生活中的应用。掌握锐角三角函数有关的计算方法。过程与方法:通过探索、学习,使学生逐步学会正确合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。班级教学目标:中考优秀率达到30%,合格率:80%。
五、采取的措施
1、认真学习钻研新课标,通盘熟悉初中数学教材及教学目标,认真备好每一堂课,精心制作总复习计划;
2、认真上好每一堂课,抓住关键点,分散难点,突出重点,在培养能力上下工夫;
3、注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验;
4、加强学校教师与家长、社会的联系,共同努力提高学生的学习成绩;
5、积极与其他教师沟通,加强教研教改,提高教学水平;
6、经常听取学生良好的合理化建议;
7、以“两头”带“中间”的战略不变;
8、注重教学中的自主学习、合作学习、探究学习等学习方式的引导;
9、认真开展课内、课外活动,激发学生的学习兴趣,工作计划《九年级数学下册教学计划》。
10、抓好中招备考工作。认真研读中招数学的考试要求和近期的考试题目类型,设计好复习内容,让学生有针对性做好复习,迎接中招的到来。
篇11:九年级下册数学教学计划
一、教材分析
本章的主要内容有反比例函数的概念、解析式、性质和图象。本章是在已经学习了图形与坐标和一次函数的基础上,再次进入函数范畴,使学生进一步理解函数的内涵,并感受世界存在的各种函数及应用函数来解决实际问题。反比例函数是最基本的函数之一,是后续学习各类函数的基础。
二、重点难点
反比例函数是继一次函数之后又一重要的基本函数,它为今后学习图象和曲线的关系(如二次函数)提供了研究方法。反比例函数本身在日常生活和生产中也有着许多直接应用,这对学生建模思想、数形结合思想等重要思想方法的形成,也会产生较大的影响,所以反比例函数是本章教学的重点。
反比例函数图象的两个分支,给反比例函数的性质带来复杂性,学生不易理解,是本章教学的难点之一;综合运用反比例函数的解析式、图象和性质解决实际问题时,往往会遇到较复杂的问题情境,需要建模,利用图象以及综合运用方程、不等式及其他数学模型,所以综合运用反比例函数知识解较复杂的实际问题是本章教学又一主要难点。
三、课时安排
1。1 反比例函数 3课时
1。2 实际问题与反比例函数 4课时
复习4课时
四、教学侧重点
(1)反比例函数概念和形成过程,应充分利用学生的生活经验和背景知识。生活经验就是学生已经知道两个量成反比例的概念,建立反比例函数离不开反比例关系这个基础;背景知识是八年级上册的“图形与坐标”及“一次函数”。所以在学习本章内容前可先与学生一起回顾一下以上已学内容,对扫清障碍,理解接受新概念很有益处。
(2)注重数学思想的渗透,从数学自身发展过程看,正是由于变量与函数概念的引入,标志着初等数学向高等数学迈进,尽管本章讲述的反比例函数仅是一种最基本、最初步的函数,但其中蕴涵的数学思想方法,对学生分析问题解决问题是十分有益的。教学中应让学生充分体会诸如变化与对应思想、数形结合思想,建模思想等。
(3)本章是实践性、应用性很强的内容,联系“科学”的知识特别多。这一方面体现教材的横向联系,又体现本章内容的实用价值。如密度、压强与体积、杠杆原理、欧姆定理、电功率计算等。若学生在这方面有缺陷,则直接影响到本章的学习。老师在教前在同学中广泛了解学生的基础,若有问题应给予补充说明。
(4)在画反比例函数的图象时充分发挥“自主探索—合作学习” 这种学习方式的作用。在按课本顺序指导学生画完图后,让学生回顾画图的全过程。体现课标要求“性质的探索过程——根据图象和解析表达式探索并理解其性质”。引导学生分清:①两个分支是一个函数的图象,不是函数有两个图象。②画曲线时,必须将自变量从小到大的顺序在各个象限里用光滑曲线连结起来,不能跨象限连结。③在图象所在的每个象限内,当k0时,函数值y随自变量x的增大而减小;当k0时,函数值y随自变量x的增大而增大。
(5)在教学中应充分利用,注意各章节之间的内在联系。在这里就尽量用图形变换的思想叙述性质、用图形变换的角度观察、分析图形之间的联系。如反比例函数的图象是关于原点成中心对称,利用这一性质可以简化画图过程;的图象与的图象关于坐标轴对称,我们可以通过图形变换来作另一函数的图象。
(6)本章还渗透了建模的思想。具体过程可概括为:由实验获得数据———用描点法画出图象———根据图象和数据判断或估计函数的类别———用待定系数法求出函数的关系式———用实验数据验证。随着社会的发展和科学技术的不断进步,数学的应用已越来越被人们所重视,培养学生分析问题、解决实际问题的能力已成为当今数学教育的主流。中学数学建模正顺应了这一时代发展的潮流,是对陈旧的数学教育观下的数学教育的有力冲击。中学数学建模从学生所经历,所接触到的客观实际中提出问题,对学生了解社会,认识社会都有积极作用。通过数学建模,对数学的广泛应用有了进一步认识,促使学生在积极思考中,在问题的解决中发现数学的价值与美。同时数学建模的复杂性,决不是凭个人的力量可以完美解决的,因此强调群体的协作。通过实际考察、实验统计、演义推理、总结提炼,最后又相互交流,共同探讨,共同解决。解决问题过程中充分体现高度的协作精神。教科书中的渗透正是体现了这种思想。
篇12:九年级下册数学教学计划
为加强课堂教学,更加高效地完成本学科教学任务制定本教学计划。
一、教学目标:教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算, 逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学 生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。
二、在教学过程中抓住以下几个环节
(1)认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。
(2)上好课:在备好课的基础上,上好每一个45分钟,提高45分钟的效率,让每一位同学都听的懂,对部分基础较差者要循序渐进,以选用的例题的难易程度不同,使每个学生能“吃”饱、“吃”好。
(3)注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。
(4)批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。
(5)按时检验学习成果,做到单元测验的有效、及时,测验卷子的批改不过夜。考后对典型错误利用学生想马上知道答案的心理立即点评。
(6)及时指导、纠错:争取面批、面授,今天的任务不推托到明日,争取一切时间,紧紧抓住初三阶段的每分每秒。课后反馈。落实每一堂课后辅助,查漏补缺。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。
(7)积极与其它老师沟通,加强教研教改,提高教学水平。
(8)经常听取学生良好的合理化建议。
(9)以“两头”带“中间”战略思想不变。
(10)深化两极生的训导。
三、不断钻研业务,提高业务能力及水平。
积极参加业务学习,看书、看报,参加学校组织的培训,使之更好的为基础教育的改革努力,掌握新的技能、技巧,不断努力,取长补短,扬长避短,努力使教学更开拓,方法更灵活,手段更先进。
四、分层辅导,因材施教
对本年级的学生实施分层辅导,利用优胜劣汰的方法,激励学生的学习激情,保证升学率及优良率,提高及格率。对部分差生实行义务补课,以提高成绩。
五、严格按照教学进度,有序的进行教学工作。用心去做,从细节去做,尽自己追大的努力,发挥自己最大的能力去做好初三毕业班的教学工作。
六、强化复习指导。
分二阶段复习:(一)第一阶段全面复习基础知识,加强基本技能训练让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。
这个阶段的复习目的是让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。
1、重视课本,系统复习。现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造,后面的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是教材中题目的引伸、变形或组合,所以第一阶段复习应以课本为主。
2、按知识板块组织复习。把知识进行归类,将全初中数学知识分为十一讲:第一讲数与式;第二讲 方程与不等式;第三讲函数;第四讲统计与概率;第五讲基本图形;第六讲 图形与变换;第七讲角、相交线和平行线;第八讲 三角形;第九讲 四边形;第十讲三角函数学;第十一讲圆 . 复习中由教师提出每个讲节的复习提要,指导学生按“提要”
篇13:九年级下册数学教学计划
第三大周:视图与投影
第四大周:反比例函数
第五大周:期中考试、频率与概率
第六大周:九年级下学期课程
第七大周:九年级下学期课程
第八大周:九年级下学期课程
第九大周:单元复习,迎接考试
篇14:九年级下册数学教学计划
一、教学目标:
使学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算, 逐步学会观察分析、综合、抽象、概括。会用简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度,顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。
二、教材分析:
本册书的4章内容涉及《数学课程标准》中数与代数空间与图形和实践与综合应用三个领域的内容,其中第26章二次函数和第28章锐角三角函数的内容,都是基本初等函数的基础知识,属于数与代数领域。
第27章相似的内容属于空间与图形领域,其内容以相似三角形为核心,此外还包括了位似变换。第29章投影与视图也属于空间与图形领域,这一章是应用性较强的内容,它从由物画图和由图想物两个方面,反映平面图形与立体图形的相互转化,对于培养空间想象力能够发挥重要作用。本册书的第29章安排了一个课题学习制作立体模型,并在每一章的最后安排了2~3个数学活动,通过这些课题学习和数学活动来落实与本册内容关系密切的实践与综合应用方面的要求。
三、教法和学法:
(1)指导学生形成能力.
(2)指导学生学会学习能力.要求学生边读边思边做好预习笔记,从而能带着问题听课.
(3)指导学生学习的方法.
(4)指导学生总结,使他们能够把知识梳理。.
(5)指导学生有效的记忆方法和温习教材的方法.
(6)学习能力的指导: 包括观察力、记忆力、思维力、想象力、注意力以及自学、表达等能力的培养.
(7)应考方法的指导: 教育学生树立信心,克服怯场心理,端正考试观.要把题目先看一遍,然后按先易后难的次序作答;要审清题意,明确要求,不漏做、多做;要仔细检查修改.
(8)良好学习心理的指导: 教育学生学习时要专注,不受外界的干扰;要耐心仔细,独立思考,不抄袭他人作业;要学会分析学习的困难,克服自卑感和骄傲情绪.
四、阶段性测试或检查方式及辅导措施:
(1)注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。
(2)批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。
(3)按时检验学习成果,做到单元测验的有效、及时,测验卷子的批改不过夜。考后对典型错误利用学生想马上知道答案的心理立即点评。
(4)及时指导、纠错:争取面批、面授,今天的任务不推托到明日,争取一切时间,紧紧抓住初三阶段的每分每秒。课后反馈。落实每一堂课后辅助,查漏补缺。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。
(5)积极与其它老师沟通,加强教研教改,提高教学水平。
(6)经常听取学生良好的合理化建议。
(7)以两头带中间战略思想不变。
五、教学进度安排:
2.233.1 第一周: 讲评期末试卷 27.2 相似三角形
3.23.8 第二周: 二十八章 锐角三角函数
3.93.15 第三周: 28.1 锐角三角函数
3.163.22 第四周: 28.2 解直角三角形
3.233.29 第五周: 第二十九章 视图与投影(11)29.1 三视图
3.304.5 第六周: 小复习单元测试及讲评
4.64.12 第七周: 期中考试 讲评试题
4.134.19 第八周: 29.1 三视图 29.2 展开图 4.204.26 第九周: 28.2 解直角三角形
4.275.3 第十周: 28.3 课题学习测量 小复习单元测试及讲评
5.45.10 第十一周: 第二十九章 视图与投影(11)29.1 三视图
5.115.17 第十二周: 29.1 三视图 29.2 展开图
5.185.24 第十三周: 29.2 展开图 29.3 课题学习图纸与实物模型小复习单元测试及讲评
5.255.31 第十四周: 综合复习一
6.16.7 第十五周: 综合复习二
6.86.14 第十六周: 综合复习三
6.156.21 第十七周: 综合复习四
篇15:九年级下册数学教学计划
一、指导思想
以发展观为指导,以复习课型模式研究,提高课堂效益为重点,面向全体学生,优生优培,中程生提高,困难生稳中求进;依纲据本,抓住重点,突破难点,强化薄弱环节;加强教情、学情研究,强化中考的研究,大面积提高教学成绩,促进初三复习教学工作又好又快发展。
主要工作及要求、措施
1、提高认识,全力以赴,进入冲刺状态
首先,每位初三教师要充分认识复习教学的重要性,增强“责任重于泰山,质量压倒一切”的责任感,树立“认真就是水平,负责就是能力”的观念,发扬关键时刻冲得上豁得出的拼搏精神,全力以赴,聚精会神,专心致志,真真正正进入冲刺状态,苦战100天,用成绩说话,坚决夺取今年中考的全面胜利。
其次,全体教师要以毕业班工作的大局为重,服从安排,听从指挥,不管是级部的安排,还是各备课组的布置,都要扎扎实实贯彻执行,将落实进行到底。纪律严明,政令畅通,是工作胜利的保障。要彻底杜绝有令不行,有禁不止的以自我为中心的个人主义的不良作风。
第三,全体教师要加大精诚合作的团队意识,实实在在搞好团结。团结出力量,团结出成绩。在初三这个集体内坚决反对那种意气用事,挑拨离间的行为。有意见、有矛盾当面说开,大事讲原则,小事讲风格;有困难、有问题,大家齐帮助、共协商,形成一个和谐、融洽的工作氛围。
2、周密计划,科学安排
各学科现已完成教学进度,学期开始即转入总复习阶段。总体时间安排是3月上旬—4月中旬45天左右为第一轮复习,以课本知识的疏理、归纳、总结为主;4月下旬—5月中旬30天左右,以课外拓展为主,5月下旬—6月中考前,主要是整合升华阶段,训练应试能力与技巧。
三轮复习的具体思路是
一轮复习本着全面、扎实、系统、灵活的指导思想,一是做到“四个坚持”,即:坚持把复习的重点放在基础知识上;坚持补弱纠偏,重在一轮;坚持改进课堂教学,提高复习效率;坚持面向全体,实现大面积丰收。二是落实“四个为主”,即以基础知识的复习为主,以低中档题目的训练为主,以学科内综合为主,以小综合训练为主。三是处理好“三个关系”,即:基础和能力的关系(强化基础,提升能力),扬长与补弱的关系,复习知识与做题的关系(做题的目的是回扣知识提升能力)。四是确保两项常规的落实,即教师的教学常规和学生学习常规的落实。
二轮复习本着“巩固、完善、综合、提高”的指导思想,采取“专题复习加综合训练”的复习模式,突出“五个强化”,即①强化时间观念;②强化研究:重点研究“两纲”(教学大纲和考试说明),“两题”(综合题和能力题)、“两课”(复习课和讲评课)、“两生”(优生和困难生)、“两法”(教学方法和学习方法)、“两情”(教情和学情);③强化训练:立足“三个讲好”,增强“五个针对性”。“三个讲好”:讲好专题、讲好试卷、讲好练习;五个针对性:针对目标生讲、针对中考新模式指向讲、针对二轮复习能力要求讲、针对反馈的问题讲、针对典型题目讲;④强化应试技巧与规范化,最大限度降低非知识性丢分;⑤强化学生心理调控,加强心理辅导,使学生以一种积极的心态复习,以必胜的信念参加中考。
三轮复习以“回扣、模拟、完善、调整”为指导思想。抓回扣做到“四化要求”,即:回扣教材提纲化、回扣基础系统化、回扣形式习题化、回扣时间具体化;抓模拟做到“四性要求”,即试题体现基础性,考试体现模拟性,答题体现规范性,讲解体现系统性。逐步达到完善知识体系,适应考试要求、调整教与学的方向、升华应试技能的目的。
篇16:九年级下册数学教学计划
教学目标
【知识与技能】
使学生能利用描点法作出函数y=ax2+k的图象.
【过程与方法】
让学生经历二次函数y=ax2+k的性质探究的过程,理解二次函数y=ax2+k的性质及它与函数y=ax2的关系,培养学生观察、分析、猜测并归纳、解决问题的能力.
【情感、态度与价值观】
培养学生敢于实践、勇于发现、大胆探索、合作创新的精神.
重点难点
【重点】
会用描点法画出二次函数y=ax2+k的图象,理解二次函数y=ax2+k的性质,理解函数y=ax2+k与函数y=ax2的相互关系.
【难点】
正确理解二次函数y=ax2+k的性质,理解抛物线y=ax2+k与抛物线y=ax2的关系.
教学过程
一、问题引入
1.二次函数y=2x2的图象是,它的开口向,顶点坐标是,对称轴是,在对称轴的左侧,y随x的增大而;在对称轴的右侧,y随x的增大而.函数y=ax2在x=时,取最值,其最值是.
2.抛物线y=x2+1,y=x2-1的开口方向、对称轴和顶点坐标各是什么?
3.抛物线y=x2+1,y=x2-1与抛物线y=x2有什么关系?
二、新课教授
问题1:对于前面提出的第2、3个问题,你将采取什么方法加以研究?
(画出函数y=x2+1、y=x2-1和函数y=x2的图象,并加以比较.)
问题2:你能在同一直角坐标系中画出函数y=x2+1与y=x2的图象吗?
师生活动:
学生回顾画二次函数图象的三个步骤,按照画图的步骤画出函数y=x2+1、y=x2的图象,观察、讨论并归纳.
教师写出解题过程,与学生所画的图象进行比较,帮助学生纠正错误.
解:(1)列表:
x…-3-2-10123…
y=x2…9410149…
y=x2+1…105212510…
(2)描点:用表格中各组对应值作为点的坐标,在平面直角坐标系中描点.
(3)连线:用光滑曲线顺次连接各点,得到函数y=x2和y=x2+1的图象.
问题3:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?
师生活动:
教师引导学生观察上表并思考,当x依次取-3、-2、-1、0、1、2、3时,两个函数的函数值之间有什么关系?
学生观察、讨论、归纳得:当自变量x取同一数值时,函数y=x2+1的函数值比函数y=x2的函数值大1.
教师引导学生观察函数y=x2和函数y=x2+1的图象,先研究点(-1,1)和点(-1,2)、点(0,0)和点(0,1)、点(1,1)和点(1,2)的位置关系.
学生观察、讨论、归纳得:反映在图象上,函数y=x2+1的图象上的点都是由函数y=x2的图象上的相应点向上移动了一个单位.
问题4:函数y=x2+1和y=x2的图象有什么联系?
学生由问题3的探索可以得到结论:函数y=x2+1的图象可以看成是将函数y=x2的图象向上平移一个单位得到的.
问题5:现在你能回答前面提出的第2个问题了吗?
生:函数y=x2+1与函数y=x2的图象开口方向相同、对称轴相同,但顶点坐标不同,函数y=x2的图象的顶点坐标是(0,0),而函数y=x2+1的图象的顶点坐标是(0,1).
问题6:你能由函数y=x2+1的图象得到函数y=x2+1的一些性质吗?
生:当x0时,函数值y随x的增大而减小;当x0时,函数值y随x的增大而增大;当x=0时,函数取得最小值,最小值是y=1.
问题7:先在同一直角坐标系中画出函数y=2x2+1与函数y=2x2-1的图象,再作比较,说说它们有什么联系和区别.
师生活动:
教师在学生画函数图象的同时,巡视指导.学生动手画图,观察、讨论、归纳.
解:先列表:
x…-2-1.5-1-0.500.511.52…
y=2x2+1…95.531.511.535.59…
y=2x2-1…73.51-0.5-1-0.513.57…
然后描点画图,得y=2x2+1,y=2x2-1的图象.
教师让学生发表意见,归纳为:函数y=2x2+1与函数y=2x2-1的图象的开口方向、对称轴相同,但顶点坐标不同.函数y=2x2-1的图象可以看成是将函数y=2x2+1的图象向下平移两个单位得到的.
问题8:你能说出函数y=x2-1的图象的开口方向、对称轴、顶点坐标以及这个函数的性质吗?
师生活动:
教师让学生观察y=x2-1的图象.
学生动手画图,观察、讨论、归纳.
学生分组讨论这个函数的性质,各组选派一名代表发言.最后归纳总结:函数y=x2-1的图象的开口向上,对称轴为y轴,顶点坐标是(0,-1);当x0时,函数值y随x的增大而减小;当x0时,函数值y随x的增大而增大;当x=0时,函数取得最小值,最小值为y=-1.
三、巩固练习
1.在同一直角坐标系中,画出函数y=x2、y=x2+2、y=x2-2的图象.
(1)填表:
x… …
y=x2… …
y=x2+2… …
y=x2-2… …
(2)描点,连线:
【答案】略
2.观察第1题中所画的图象,并填空:
(1)抛物线y=x2+2的开口方向是,对称轴是,顶点坐标是;抛物线y=x2+2是由抛物线y=x2向平移个单位长度得到的;
(2)对于y=x2-2,当x0时,函数值y随x的增大而;当x0时,函数值y随x的增大而;
(3)对于函数y=x2,当x=时,函数取最值,为.
对于函数y=x2+2,当x=时,函数取最值,为.
对于函数y=x2-2,当x=时,函数取最 值,为 .
【答案】(1)向上 x=0 (0,2) 上 2 (2)增大 减小 (3)0 小 0 0 小 2 0 小 -2
四、课堂小结
1.函数y=ax2(a≠0)和函数y=ax2+k(a≠0)的图象形状相同,只是位置不同,把y=ax2的图象沿y轴向上(当k0时)或向下(当k0时)平移|k|个单位就得到函数y=ax2+k的图象.
2.抛物线y=ax2+k(a≠0)的性质.
(1)抛物线y=ax2+k(a≠0)的对称轴是y轴,顶点坐标是(0,k).
(2)当a0时,抛物线开口向上,并向上无限伸展;
当a0时,抛物线开口向下,并向下无限伸展.
(3)当a0时,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大.这时,当x=0时,y有最小值k.
当a0时,在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小.这时,当x=0时,y有最大值k.
教学反思
通过本节课的学习,学生做到了以下三个方面:首先,掌握函数y=ax2(a≠0)和函数y=ax2+k(a≠0)的图象形状相同,只是位置不同,把y=ax2的图象沿y轴向上(当k0时)或向下(当k0时)平移|k|个单位就得到y=ax2+k的图象;其次,能够理解a、k对函数图象的影响,初步体会二次函数关系式与图象之间的联系,渗透数形结合的思想,为今后的学习打下良好的基础;最后,形成严谨的学习态度和求简的数学精神.
以上就是数学网为大家整理的九年级下册数学教学计划:第6章第2节二次函数的图象和性质(2课时),怎么样,大家还满意吗?希望对大家有所帮助,同时也祝大家学习进步,考试顺利!
篇17:九年级下册数学教学计划
一、学情分析
本人今年任九年级(1)、(2)班数学教学,两班共计93人,通过对上期末检测和入学考试分析,发现本班学生存在很严重的两极分化。一方面是平时成绩比较突出的学生基本上把握了学习的数学的方法和技巧,对学习数学爱好浓厚。另一方面是部分学生因为各种原因,数学已经落后很远,基本丧失了学习数学的兴趣。
二、指导思想
以《初中数学新课程标准》为准绳,以提高学生中考成绩为出发点,以洋思中学教学模式为学习标准,注重培养学生的基础知识和基本技能,提高学生解题答题的能力。同时通过本学期的课堂教学,在完成九年级上册数学教学任务的同时适当完成九年级下册新授教学内容。
三、教材分析
一元二次方程:本章主要是掌握配方法、公式法和因式分解法解一元二次方程,并运用一元二次方程解决实际问题。本章重点是解一元二次方程的思路及详细方法,本章的难点是解一元二次方程。
证明(三):本章经历探索、猜想、证明的过程,进一步发展学生的推理论证能力。进一步掌握综合的证明方法,能够证明与平行四边形、等腰梯形、矩形、菱形等有关性质及判定,并能证明其他相关结论。
视图与投影:引导学生对实物进行合理抽象、想象物体的形状,对生活中的物体进行合理抽象,关注学生的活动过程,关注学生直观思考的水平,开展多种形式的活动。
反比例函数:函数是探索具体问题中数量关系和变化规律的基础上抽象出的重要概念。本章要求结合具体情境领会反比例函数作为数学模型的意义,通过图象理解反比例函数的性质,逐步提高观察归纳能力。
频率与概率:通过活动发展学生合作交流意识和能力,理解事件发生的频率与概率之间的关系,初步感受统计推断的合理性,体会频率与概率之间的关系。
四、教学措施
1、精心备课,设置好每个教学情境,激发学生学习兴趣和欲望。深入浅出,帮助学生理解各个知识点,突出重点,讲透难点。
2、加强对学生课后的辅导,尤其是中等生和后进生的基础知识的辅导,提高他们的解题作答能力和正确率。
3、精心组织单元测试,认真分析试卷中暴露出来的问题,并对其中大多数学生存在的问题集中进行分析与讲解,力求透彻。
五、进度安排
第一大周:一元二次方程
篇18:九年级数学下册教学计划
九年级数学下册教学计划
九年级数学下册教学目的是教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。以下是九年级数学下册教学计划,欢迎阅览!
本学期是初中学习的关键时期,教学任务非常艰巨,九年级数学下册教学计划。因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。九年级毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。下面特制定以下教学复习计划。
一、学情分析
经过前面五个学期的数学教学,本班学生的数学基础和学习态度已经明晰可见。通过上个学期多次摸底测试及期末检测发现,本班最大的特点是两极分化现象极为严重。虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩十分低下,厌学情绪非常严重,基本放弃对数学的学习了。其次是部分中等学生对前面所学的一些基础知识记忆不清,掌握不牢。
二、指导思想
坚持贯彻党的十八大教育方针,继续深入开展新课程教学改革。立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进行研究,积极探索高效的复习途径,夯实学生数学基础,提高学生做题解题的能力,和解答的准确性,以期在中考中取得优异的数学成绩。并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。
三、教学内容分析
本学期,除了要完成规定的所学内容,就将开始进入初中数学总复习,将九年制义务教育数学课本教学内容分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。
在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。这些新题型在中考试题中也占有一定的位置,并且有逐年扩大的趋势。如果想在综合题以及应用性问题和开放性问题中获得好成绩,那么必须具备扎实的基础知识和知识迁移能力。因此在总复习阶段,必须牢牢抓住基础不放,对一些常见题解题中的通性通法须掌握。
学生解题过程中存在的主要问题:
(1)审题不清,不能正确理解题意;
(2)解题时自己画几何图形不会画或有偏差,从而给解题带来障碍;
(3)对所学知识综合应用能力不够;
(4)几何依然对部分同学是一个难点,主要是几何分析能力和推理能力较差。
四、教学目标
态度与价值观:通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。
知识与技能:理解二次函数的图像、性质与应用;理解相似三角形、相似多边形的判定方法与性质,理解投影与视图在生活中的`应用。掌握锐角三角函数有关的计算方法。过程与方法:通过探索、学习,使学生逐步学会正确合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。班级教学目标:中考优秀率达到30%,合格率:80%。
五、采取的措施
1、认真学习钻研新课标,通盘熟悉初中数学教材及教学目标,认真备好每一堂课,精心制作总复习计划;
2、认真上好每一堂课,抓住关键点,分散难点,突出重点,在培养能力上下工夫;
3、注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验;
4、加强学校教师与家长、社会的联系,共同努力提高学生的学习成绩;
5、积极与其他教师沟通,加强教研教改,提高教学水平;
6、经常听取学生良好的合理化建议;
7、以“两头”带“中间”的战略不变;
8、注重教学中的自主学习、合作学习、探究学习等学习方式的引导;
9、认真开展课内、课外活动,激发学生的学习兴趣,工作计划《九年级数学下册教学计划》。
10、抓好中招备考工作。认真研读中招数学的考试要求和近期的考试题目类型,设计好复习内容,让学生有针对性做好复习,迎接中招的到来。
篇19:九年级下册的数学教学计划
一、教学背景:
为了加强课堂教学,完善教学常规,能够保证教学的顺利开展,完成初中最后一学期的数学教学,使之高效完成学科教学任务制定了本教学计划。
二、学情分析:
这学期我所带的班级成绩较为一般。查漏补缺,特别是多关心、鼓励他们,让这些基础过差的学生能努力掌握一部分简单的知识,提高他们的学习积极性,建立一支有进取心、能力较强的学习队伍,让全体同学都能树立明确的数学学习目的,形成良好的数学学习氛围。
三、新课标要求:
初三数学是按照九年义务教育数学课程标准来实施的,其目的是通过数学教学使每个学生都能够在学习过程中获得最适合自己的发展。通过初三数学的教学,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。
提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度,顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。
四、本学期学科知识在整个体系中的位置和作用:
本册书的4章内容涉及《数学课程标准》中“数与代数”“空间与图形”和“实践与综合应用”三个领域的内容,其中“二次函数”和“锐角三角函数”的内容,都是基本初等函数的基础知识,属于“数与代数”领域。然而,它们又分别与抛物线和直角三角形有密切关系,即这两章内容既涉及数量关系问题,又涉及图形问题,能够很好地反映数形结合的数学思想和方法。“相似”的内容属于“空间与图形”领域,其内容以相似三角形为核心,此外还包括了“位似”变换。在这一章的最后部分,安排了对初中阶段学习过的四种图形变换(平移、轴对称、旋转和位似)进行归纳以及综合运用的问题。
“投影与视图”也属于“空间与图形”领域,这一章是应用性较强的内容,它从“由物画图”和“由图想物”两个方面,反映平面图形与立体图形的相互转化,对于培养空间想象力能够发挥重要作用。对于“实践与综合应用”领域的内容,本套教科书除在各章的正文和习题部分注意安排适当内容之外,还采用了“课题学习”“数学活动”等编排方式加强对数学应用的体现。本册书的第29章安排了一个课题学习“制作立体模型”,并在每一章的最后安排了2~3个数学活动,通过这些课题学习和数学活动来落实与本册内容关系密切的“实践与综合应用”方面的要求。
五、四个单元章节:
二次函数
本章主要研究二次函数的概念、图象和基本性质,用二次函数观点看一元二次方程,用二次函数分析和解决简单的实际问题等。这些内容分为三节安排。
相似
本章的主要内容包括相似图形的概念和性质,相似三角形的判定,相似三角形的应用举例和位似变换等。此前学习的全等是图形之间的一种特殊关系,而本章学习的相似是比全等更具一般性的图形之间的关系。全等可以被认为是特殊的相似(相似比为1),对于全等的认识是学习相似的重要基础。
锐角三角函数
本章主要内容包括:锐角三角函数(正弦、余弦和正切),解直角三角形。锐角三角函数是自变量为锐角时的三角函数,即缩小了定义域的后的三角函数。解直角三角形在实际当中有着广泛的应用,锐角三角函数为解直角三角形提供了有效的工具。相似三角形的知识是学习锐角三角函数的直接基础,勾股定理等内容也是解直角三角形时经常使用的数学结论,因此本章与第18章“勾股定理”和“相似”有密切关系。