欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教学计划 > 数学教学计划 > 数学教学计划之空间直角坐标系

数学教学计划之空间直角坐标系

网友 分享 时间: 加入收藏 我要投稿 点赞

这里小编给大家分享一些数学教学计划之空间直角坐标系(共含4篇),方便大家学习。同时,但愿您也能像本文投稿人“sz110086”一样,积极向本站投稿分享好文章。

数学教学计划之空间直角坐标系

篇1:高二数学空间直角坐标系教学计划

※教学目标:

知识与技能:

1、掌握空间直角坐标系的建立过程和相关概念

2、学会在坐标系中找出空间点的位置,会写一些简单几何体中有关点的坐标

过程与方法:

1、经历运用空间直角坐标系来描述空间图形的过程,初步建立数感和空间感,从空间的点的坐标培养学生的空间想象能力、抽象思维和探索能力。

2、通过类比、迁移、的方法得出空间直角坐标系的建立的过程和空间点

的坐标确定的方法。

情感、态度与价值观:

1、让学生认识到数学与日常生活的密切联系,从而能够积极的参与数学的学习活动。

2、通过学生的自主学习和合作学习,培养学生合作精神。

※教学重、难点:

重点:空间直角坐标系的建立,点在空间直角坐标系中的坐标表示

难点:通过建立适当的空间直角坐标系来确定空间点的坐标,以及相关的应用。

※教学准备:

教师准备:制作本节图4.3-1、图4.3-2、图4.3-3、图4.3-4、图4.3-5和食盐

晶体模型的投影片

学生准备:直尺和正方形纸片

※教学过程:

(一)问题情境、导入课题

【投影】问题1、数轴Ox上的点M,用代数的方法怎样表示呢?

问题2、直角坐标平面上的点M,怎样表示呢?

问题3、怎样确切的表示室内灯泡的位置?

(学生复习回顾后回答问题1和问题2,思考、讨论后回答)

【点拨】1、问题1和问题2是确定点在直线和直角坐标平面的位置的方法。

2、问题3是空间点的位置确定的问题,我们可以类比平面直角坐标的'方法,建立空间直角坐标系来确定空间点的位置(板书课题)

(二)师生互动、探究新知

1、空间直角坐标系的建立

【投影】问题4、空间中的点M用代数的方法又怎样表示呢?

(教师设问)空间直角坐标系该如何建立呢?

【投影】(1)直角坐标系的建立过程

如图:OABC-DABC是单位正方体,以O为原点,分别以射线OA,OC,OD的方向为正方向,以OA,OC,OD的长为单位长,建立三条数轴: x轴、y 轴、z 轴.这时我们说建立了一个空间直角坐标系O-xyz,其中点O 叫做坐标原点, x轴(横轴)、y 轴(纵轴)、z 轴(竖轴)叫做坐标轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面、yOz平面、zOx平面.(引导学生仔细观察和理解)

【说明】①三条数轴两两相互垂直且相交于原点O,同时都有相同的单位长度

②任意两条确定一个平面,共有三个平面,称坐标平面

③三个坐标平面把空间分成8个部分(让同学动手操作亲历感受)

篇2:高二数学空间直角坐标系教学计划

(3)右手直角坐标系

2、空间点的坐标表示

【投影】合作探究:

有了空间直角坐标系,那空间中的任意一点A怎样来表示它的坐标呢?

(设问)平面直角坐标系中的点与坐标有着一一对应关系,那么在空

间直角坐标系中点与三维有序实数组之间也有一一对应关系

吗?(学生自行阅读教材P134)

【点拨】是一一对应关系。

3、坐标平面及坐标轴上的点的特征

【投影】练习:如图,OABC—A’B’C’D’是单位正方体.以O为原点,分别以射线OA,OC, OD’的方向为正方向,以线段OA,OC, OD’的长为单位长,建立空间直角坐标系O—xyz.试说出正方体的各个顶点的坐标.并指出哪些点在坐标轴上,哪些点在坐标平面上y

(师生共同完成后,投影幻灯片)

【投影】想一想?

在空间直角坐标系中,x、y、z坐标轴上的点、xoy、xoz、yoz坐标平面

内的点的坐标各有什么特点?

(学生思考、讨论后教师总结)

(三)典型例题、解释应用

【投影】例1:如图在长方体OABC-A1B1C1D1 中,|OA|=3,|OC|=4,|OD1|=2,写出点D1,C,A1,B1的

坐标及BB1的中点M的坐标和A1AOO1的对角线的交点N的坐标.. 目标:学生在教师的指导下完成,加深对点的坐标的理解.

(解的分析和过程见投影)

【投影】例2:结晶体的基本单位称为晶胞,下图是食盐晶胞的示意图(可看成八1个棱长是的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表绿2

原子.如图建立空间直角坐标系,试写出全部钠原子所在的位置的坐标.

目标:教师引导学生先阅读教材,根据建立的空间直角坐标系,写出所求

点的坐标.

(解的分析和过程见投影)

( 四)随堂练习、巩固新知

练习1、教材P136练习第2小题

(五)课堂小结、温故知新

1、空间直角坐标系的建立

2、空间直角坐标系的画法

3、空间直角坐标系中点的坐标表示方法及点与坐标的一一对应关系

(六)布置作业

教材P136练习第1、3小题。

(七)板书设计:

4.3.1空间直角坐标系

一、空间直角坐标系的建立

1、建立过程

2、空间直角坐标系画法

3、空间直角坐标系是右手系

二、空间坐标系中点的坐标表示方法

三、坐标系中特殊点的坐标特征

1、坐标轴上点的坐标特征

2、坐标平面上点的坐标特点

四、例题分析

篇3:高一下册数学空间直角坐标系教学计划

高一下册数学空间直角坐标系教学计划

教材教法分析

本节课是苏教版普通高中课程标准实验教科书数学必修(2)第2章第三节的第一节课.该课是在二维平面直角坐标系基础上的推广,是空间立体几何的代数化.教材通过一个实际问题的分析和解决,让学生感受建立空间直角坐标系的必要性,内容由浅入深、环环相扣,体现了知识的发生、发展的过程,能够很好的诱导学生积极地参与到知识的探究过程中.同时,通过对《空间直角坐标系》的学习和掌握将对今后学习本节内容《空间两点间的距离》和选修2-1内容《空间中的向量与立体几何》有着铺垫作用.由此,本课打算通过师生之间的合作、交流、讨论,利用类比建立起空间直角坐标系.

学情分析

一方面学生通过对空间几何体:柱、锥、台、球的学习,处理了空间中点、线、面的关系,初步掌握了简单几何体的直观图画法,因此头脑中已建立了一定的空间思维能力.另一方面学生刚刚学习了解析几何的基础内容:直线和圆,对建立平面直角坐标系,根据坐标利用代数的方法处理问题有了一定的认识,因此也建立了一定的转化和数形结合的`思想.这两方面都为学习本课内容打下了基础.

教学目标

1.知识与技能

①通过具体情境,使学生感受建立空间直角坐标系的必要性

②了解空间直角坐标系,掌握空间点的坐标的确定方法和过程

③感受类比思想在探究新知识过程中的作用

2.过程与方法

①结合具体问题引入,诱导学生探究

②类比学习,循序渐进

3.情感态度与价值观

通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系和研究事物从低维到高维的一般方法.通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,不断地拓展自己的思维空间.

教学重点

本课是本节第一节课,关键是空间直角坐标系的建立,对今后相关内容的学习有着直接的影响作用,所以本课教学重点确立为空间直角坐标系的理解.

教学难点

通过建立恰当的空间直角坐标系,确定空间点的坐标。

先通过具体问题回顾平面直角坐标系,使学生体会用坐标刻画平面内任意点的位置的方法,进而设置具体问题情境促发利用旧知解决问题的局限性,从而寻求新知,根据已有一定空间思维,所以能较容易得出第三根轴的建立,进而感受逐步发展得到空间直角坐标系的建立,再逐步掌握利用坐标表示空间任意点的位置.总得来说,关键是具体问题情境的设立,不断地让学生感受,交流,讨论.

篇4:高一数学空间直角坐标系知识点

1定义

各轴之间的顺序要求符合右手法则,即以右手握住Z轴,让右手的四指从X轴的正向以90度的直角转向Y轴的正向,这时大拇指所指的方向就是Z轴的.正向.这样的三个坐标轴构成的坐标系称为右手空间直角坐标系.与之相对应的是左手空间直角坐标系.一般在数学中更常用右手空间直角坐标系,在其他学科方面因应用方便而异。三条坐标轴中的任意两条都可以确定一个平面,称为坐标面.它们是:由X轴及Y轴所确定的XOY平面;y轴与z轴所确定的yOz平面;z轴与x轴所确定的yOx平面.这三个相互垂直的坐标面把空间分成八个部分,每一部分称为一个卦限.位于X,Y,Z轴的正半轴的卦限称为第一卦限,从第一卦限开始,在XOY平面上方的卦限,按逆时针方向依次称为第二,三,四卦限;第一,二,三,四卦限 下方的卦限依次称为第五,六,七,八卦限.

2具体概念

以空间一点O为原点,建立三条两两垂直的数轴;x轴,y轴,z轴,这时建立了空间直角坐标系Oxyz,其中点O叫做坐标原点,三条轴统称为坐标轴,由坐标轴确定的平面叫坐标平面。

3点公式

空间中两点P1(x1,y1,z1)、P2(x2,y2,z2),中点P坐标[(x1+x2)/2,(y1+y2)/2,(z1+z2)/2

4距离公式

在空间中:

设A(x1,y1,z1),B(x2,y2,z2)

|AB|=[(x1-x2)2+ (y1-y2)2+ (z1-z2)2]

表示方法

设点M为空间的一个定点,过点M分别作垂直于x、y、z轴的平面,依次交x、y、z轴于点P、Q、R设点P、Q、R在x、y、z轴上的坐标分别为x、y、z,那么就得到与点M对应惟一确定的有序实数组(x,y,z),有序实数组(x,y,z)叫做点M的坐标,记作M(x,y,z),这样就确定了M点的空间坐标了,其中x、y、z分别叫做点M的横坐标、纵坐标、竖坐标。

运动空间和时间知识点

1.物质与运动

世界是物质的,而物质是运动的。运动是物质的存在方式和根本属性。恩格斯说:“运动,就它被理解为存在方式,被理解为物质的固有属性这一最一般的意义来说,囊括宇宙中发生的一切变化和过程,从单纯的位置变动起直到思维。”运动是标志一切事物和现象的变化及其过程的哲学范畴。

物质和运动是不可分割的,一方面,运动是物质的存在方式和根本属性,物质是运动着的物质,脱离运动的物质是不存在的,设想不运动的`物质,将导致形而上学。另一方面,物质是一切运动变化和发展过程的实在基础和承担者,世界上没有离开物质的运动,任何形式的运动,都有它的物质主体,设想无物质的运动,将导致唯心主义。

2.运动与静止

物质世界的运动是绝对的,而物质在运动过程中又有某种暂时的静止,静止是相对的。静止是物质运动在一定条件下的稳定状态,包括空间位置和根本性质暂时未变这样两种运动的特殊状态。运动的绝对性体现了物质运动的变动性、无条件性。静止的相对性体现了物质运动的稳定性、有条件性。运动和静止相互依赖、相互渗透、相互包含,“动中有静、静中有动”。无条件的绝对运动和有条件的相对静止构成了事物的矛盾运动。只有把握了运动和静止的辩证关系,才能正确理解物质世界及其运动形式的多样性,才能理解认识和改造世界的可能性。

3.时间和空间

时间和空间是物质运动的存在形式。物质运动与时间和空间的不可分割证明了时间和空间的客观性。

时间是指物质运动的持续性、顺序性,特点是一维性。

空间是指物质运动的广延性、伸张性,特点是三维性。

物质运动总是在一定的时间和空间中进行的,没有离开物质运动的“纯粹”时间和空间,也没有离开时间和空间的物质运动。具体物质形态的时空是有限的,而整个物质世界的时空是无限的;物质运动时间和空间的客观实在性是绝对的,物质运动时间和空间的具体特性是相对的。一切以时间、地点、条件为转移,具体问题具体分析,是马克思主义的活的灵魂。物质、运动、时间、空间具有内在的统一性。

221381
领取福利

微信扫码领取福利

数学教学计划之空间直角坐标系

微信扫码分享