节第二题
型复习教法讲练结合
目标(知识、能力、教育)1.掌握列方程和方程组解应用题的方法步骤,能够熟练地列方程和方程组解行程问题和工程问题。培养学生分析、解决问题的能力。
2. 掌握列方程(组)解应用题的方法和步骤,并能灵活运用不等式(组)、函数、几何等数学知识,解决有关数字问题、增长率问题及生活中有关应用问题。
重点掌握工程问题、行程问题、增长率问题、盈亏问题、 商品打折、商品利润(率)、储蓄问题中的一些基本数量关系。
教学难点列方程解应用题中---寻找等量关系
教学媒体学案
教学过程
一:【前预习】
(一):【知识梳理】
1.列方程解应用题常用的相等关系
题型基本量、基本数量关系寻找思路方 法
工作
(工程)
问题工作量、工作效率、工作时间
把全部工作量看作1
工作量=工作效率×工作时间相等关系:各部分工作量之和=1
常从工作量、工作时间上考虑相等关系
比例问题
相等关系:各部分量之和=总量。设其中一分为 ,由已知各部分量在总量中所占的比例,可得各部分量的代数式
年龄问题大小两个年龄差不会变抓住年龄增长,一年一岁,人人平等。
利息
问题本息和、本金、利息、利率、期数关系:利息=本金×利率×期数相等关系:
本息和=本金+利息
行程问题
追击问题
路程、速度、时间的关系:
路程=速度×时间1:同地不同时出发:前者走的路程=追击者走的路程
2:同时不同地出发 :前者走的路程+两地间的距离=追击者走的路程
相遇问题同
上相等关系:甲走的路程+乙走的路程=甲乙两地间的路程
航行问题顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度1:与追击、相遇问题的思路方法类似
2:抓住两地距离不变,静水(风)速度不变的特点考虑相等关系。
数字问题多位数的表示方法: 是一个多位数可以表示为 (其中0<a、b、c<10的整数)1:抓住数字间或新数、原数间的关系寻找相等关系。
2:常常设间接未知数。
商品利润
率问题商品利润=商品售价-商品进价
首先确定售价、进价,再看利润率,其次应理解打折、降 价等含义。
2.列方程解应用题的步骤:
(1)审题:仔细阅读题,弄清题意; (2)设未知数:直接设或间接设未知数;
(3)列方程:把所设未知数当作已知数,在题目中寻找等量关系,列方程;
(4 )解方程; (5)检验:所求的解是否是所列方程的解,是否符合题意;
(6)答:注意带单位.
(二):【前练习】
1. 某商品标价为165元,若降价以九折出售(即优惠 10%),仍可获利10%(相对于进货价),则该商品的进货价是
2. 甲、乙二人投资合办一个企业,并协议按照投资额的比例分配所得利润,已知甲与乙投资额的比例为3:4,首年的利润为38500元,则甲、乙二人可获得利润分别为 元和 元
3. 某公司1996年出口创收135万美元,1997年、1998年每年都比上一年增加a%,那么,1998年这个公司出口创汇 万美元
4. 某城市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,求这个城市现有的城镇人口数与农村人口数,若设城镇现有人口数为x万,农村现有人口y万,则所列方程组为
5. 一个批发与零售兼营的具店规定,凡是一次购买铅笔301支以上(包括301支),可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,现有学生小王购买铅笔,如果给学校初三年级学生每人买1支,则只能按零售价付款,需用(m2-1)元(m为正整数,且m2-1>100);如果多买60支,则可以按批发价付款,同样需用(m2-1)元.设这个学校初三年级共有x名学生,则①x的取值范围应为 ②铅笔的零售价每支应为 元,批发价每支应为 元
(用含x,m的代数式表示)
二:【经典考题剖析】
1. A、B两地相距64千米,甲骑车比乙骑车每小时少行4千米,如果甲乙二人分别从A、
B两地相向而行,甲比乙先行40分钟,两人相遇时所行路程正好相等,求甲乙二人
路程时间速度
甲x32
乙x+432
的骑车速度.
分析: 设甲的速度为x千米/时,则乙的速度为(x+4)千米/时
行程问题即为时间、路程、速度三者之间的关系问题,在分析题意时,先画出示意
图(数形结合思想),然后设未知数,再列表,第一列填含未知数的量,第二列填题
目中最好找的量,第三列不再在题目中找,而是用前面两个量表示,往往等量关系
就在第三列所表示的量中.解完方程时要注意双重检验.
等量关系:t甲-t乙=40分钟= 小时,方程: .
2.某市为了进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路。为
使工程能提前3个月完成,需要将原定的工作效率提高12%,问原计划完成这项工程用多少个月?
工时工作量工效
原计划x 1
实际x-31
分析:工程量不明确,一般视为1,设原计划完成这项工程用x个月,实际只用了(x-3)
个月.等量关系:
实际工效=原计划工效×(1+12%).
方程:
3.某商场销售一批名牌衬衫,平均每天可售出20,每盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施。经调查发现,如果每衬衫每降价1元,商场平均每天可多售出2。
(1)若商场平均每天要盈利1200 元,每衬衫应降价多少元?
(2)每衬衫应降价多少元时,商场平均每天盈利最多?
分析:(1)设每衬衫应降价 元,则由盈利 可解出 但要
注意“尽快减少库存”决定取舍。(2)当 取不同的值时,盈利随 变化,可配方为: 求最大值。但若联系二次函数的最值求解,可设: 结合图象用顶点坐标公式解,思维能力就更上档次了。所以 在应用问题中要发散思维,自觉联系学过的所有数学知识,灵活解决问题。答案:(1)每衬衫应降价20元;(2)每衬衫应降价15元时,商场平均每天盈利最高。
4.某音乐厅5月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,
其中团体票占总票数的 .若提前购票, 则给予不同程度的优惠,在5月份内,团体
票每张12元,共售出团体票数的 , 零售票每张16元,共售出零售票数的一半.如果在6月份内,团体票要按每张16元出售,并计划在6月份内售出全部余票,那么零售票应按每张多少元定价才能使这两个月的票款收入持平?
分析:这样的题字一大堆,看到头就发胀,同学们不要怕,要有信心,一定要仔细读题,当你读懂题后事实上这类题还是比较简单的,学数学的目的就是解决现实生活中的实际问题.
因为总票数不明确,所以看为1,设6月零售票每张定价 元.
团体票数团体票收入零售票数零售票收入
5月 (张) (元) (张) (元)
6月 (张) (元) (张) (元)
等量关系:5月总收入=6月总收入
方程 .
5.要建一个面积为150m2的长方形养鸡场,为了节约材料,
鸡场的一边靠着原有的一条墙,墙长为am,另三边用
竹篱笆围成,如图,如果篱笆的长为35m,(1)求鸡场
的长与宽各为多少?(2)题中墙的长度a对题目的解
起着怎样的作用?
三:【后训练】
1.如图是某公司近三年的资金投放总额与利润统计示意图,根据图中的信息判断:①2001
年的利润率比2000年的利润率高2%;②2002年的利润率比2001年的利润率高8%;
③这三年的利润率14%;④这三年中2002年的利润率最高。其中正确的结论共有( )
A.1个 B.2个 C.3个 D.4个
2.北京至石家庄的铁路长392千米,为适应经济发展,自2001年10月21日起,某客
运列车的行车速度每小时比原增加40千米,使得石家庄至北京的行车时间缩短了1
小时,求列车提速前 的速度(只列方程).
3.2003年春天,在党和政府的领导下,我国 进行了一场抗击“非典”的战争.为了控制
疫情的蔓延,某卫生材料厂接到上 级下达赶制19.2万只加浓抗病毒口罩的任务,为使抗
病毒口罩早日到达防疫第一线,开工后每天比原计划多加工0.4万只,结果提前4天完
成任务,该厂原计划每天加工多少万只口罩?
4.一水池有甲、乙两水管,已知单独打开甲管比单独打开乙管灌满水池需多用10小时.现
在首先打开乙管10小时,然后再打开甲管,共同再灌6小时,可将水池注满,如果一开
始就把两管一同打开,那么需要几小时就能将水池注满?
5.某公司向银行贷款40万元,用生产某种新产品,已知该贷款的年利率为15%
(不计复利,即还贷前每年息不重复计息),每个新产品的成本是2.3元,售价是4元,
应纳税款为销售额的10%。如果每年生产该种产品20万个,并把所得利润(利润=
销售额-成本-应纳税款)用归还贷款,问需几年后能一次还清?
6.某商店1995年实现利税40万元(利税=销售金额-成本),1996年由于在销售管
理上 进行了一系列改革,销售金额增加到154万元,成本却下降到90万元,
(1)这个商店利税1996年比1995年增长百分之几?
(2)若这个商店1996年比1995年销售金额增长的百分数和成本下降的百分数相同,
求这个商店销售金额1996年比1995年增长百分之几?
四:【后小结】
布置作业地纲