高二属于高中三年承上启下的时期,通过高一一年的学习,高中生一方面对学校的环境、制度已经十分熟悉:另一方面又将面对高二阶段这一学习分化的分水岭,所以上好高二对整个高中来说意义重大。以下是小编给大家整理的高二数学学业水平的知识点概括,希望大家能够喜欢!
高二数学学业水平的知识点概括1
1、算法的概念:
①由基本运算及规定的运算顺序所构成的完整的解题步骤,或者是按照要求设计好的有限的计算序列,并且这样的步骤或序列能解决一类问题。
②算法的五个重要特征:
ⅰ有穷性:一个算法必须保证执行有限步后结束;
ⅱ确切性:算法的每一步必须有确切的定义;
ⅲ可行性:算法原则上能够精确地运行,而且人们用笔和纸做有限次即可完成;
ⅳ输入:一个算法有0个或多个输入,以刻划运算对象的初始条件。所谓0个输入是指算法本身定出了初始条件。
ⅴ输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的。
2、程序框图也叫流程图,是人们将思考的过程和工作的顺序进行分析、整理,用规定的文字、符号、图形的组合加以直观描述的方法
(1)程序框图的基本符号:
(2)画流程图的基本规则:
①使用标准的框图符号
②从上倒下、从左到右
③开始符号只有一个退出点,结束符号只有一个进入点,判断符号允许有多个退出点
④判断可以是两分支结构,也可以是多分支结构
⑤语言简练
⑥循环框可以被替代
3、三种基本的逻辑结构:顺序结构、条件结构和循环结构
(1)顺序结构:
顺序结构描述的是是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。
(2)条件结构:分支结构的一般形式
两种结构的共性:
①一个入口,一个出口。特别注意:一个判断框可以有两个出口,但一个条件分支结构只有一个出口。
②结构中每个部分都有可能被执行,即对每一个框都有从入口进、出口出的路径。
以上两点是用来检查流程图是否合理的基本方法(当然,学习循环结构后,循环结构也有此特点)
(3)循环结构的一般形式:
在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。
循环结构又称重复结构,循环结构可细分为两类:
①如左下图所示,它的功能是当给定的条件成立时,执行A框,框执行完毕后,再判断条件是否成立,如果仍然成立,再执行A框,如此反复执行框,直到某一次条件不成立为止,此时不再执行A框,从b离开循环结构。
②如右上图所示,它的功能是先执行,然后判断给定的条件是否成立,如果仍然不成立,则继续执行A框,直到某一次给定的条件成立为止,此时不再执行A框,从b点离开循环结构。
4、算法的基本语句
(1)赋值语句:在表述一个算法时,经常要引入变量,并赋给该变量一个值,用来表明赋给某一个变量的一个具体的确定值的语句叫做赋值语句。
赋值语句的一般格式:变量名表达式
①“=”的意义和作用:赋值语句中的“=”号,称作赋值号。
②赋值语句的作用:先计算出赋值号右边表达式的值,然后把该值赋给赋值号左边的变量,使该变量的值等于表达式的值。
③关于赋值语句,需要注意几点:
ⅰ赋值号左边只能是变量名,而不是表达式。例如3.6=X,5=y;都是错误的.
ⅱ赋值号左右不能对换:赋值语句是将赋值号右边的表达式赋值给赋值号左边的变量,例如:Y=X,表示用X的值替代变量Y原先的取值,不能改写成X=Y,因为后者表示用Y的值替代变量X的值。
ⅲ不能利用赋值语句进行代数式(或符号)的演算:在赋值语句中的赋值符号右边的表达式中的每一个变量都必须事先赋值给确定的值,不能用赋值语句进行如化简、因式分解等演算,在一个赋值语句中只能给一个变量赋值,不能出现两个或多个“=”。
ⅳ赋值号和数学中的等号的意义不同:赋值号左边的变量如果原来没有值,则在执行赋值语句后,获得一个值。例如X=5;Y=1等;如果原来已经有值,则执行该语句后,以赋值号右边表达式的值代替该变量的原值,即将原值“冲掉”。例如:N=N+1在数学中是不成立的,但在赋值语句中,意思是将N的原值加1再赋给N,即N的值增加1。
计算机执行这种形式的条件语句时,也是首先对IF后的条件进行判断,如果条件符合,就执行语句,如果条件不符合,则直接结束该条件语句,转而执行其他语句。其对应的程序框图为:(如下图)
条件语句的作用:在程序执行过程中,根据判断是否满足约定的条件而决定是否需要转换到何处去。需要计算机按条件进行分析、比较、判断,并按判断后的不同情况进行不同的处理。
(3)循环结构:
算法中的循环结构是由循环语句来实现的。对应于程序框图中的两种循环结构,一般程序设计语言中也有当型(WHILE型)和直到型(for型)两种语句结构。即WHILE语句和UNTIL语句。
①WHILE语句的一般格式是:
其中循环体是由计算机反复执行的一组语句构成的。WHLIE后面的“条件”是用于控制计算机执行循环体或跳出循环体的。
当计算机遇到WHILE语句时,先判断条件的真假,如果条件符合,就执行WHILE与END之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止。这时,计算机将不执行循环体,直接跳到END语句后,接着执行END之后的语句。其对应的程序结构框图为:(如下图)
其对应的程序结构框图为:
从for型循环结构分析,计算机执行该语句时,先把初始值赋给循环变量,记下终值和步长,并比较初值和中止,如果初值超过终值,就执行end以后的语句,否则执行for语句下面的语句,执行到end语句时,计算机让循环变量增加一个步长值,然后用增值后的循环变量值与终值比较,如果超过终值,就执行for语句以后的语句.是先执行循环体后进行条件判断的循环语句。
高二数学学业水平的知识点概括2
1.求函数的单调性:
利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。
利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。
反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,
(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);
(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);
(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。
2.求函数的极值:
设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。
可导函数的极值,可通过研究函数的单调性求得,基本步骤是:
(1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况:
(4)检查f(x)的符号并由表格判断极值。
3.求函数的值与最小值:
如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值。函数在定义域内的极值不一定,但在定义域内的最值是的。
求函数f(x)在区间[a,b]上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;
(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的值与最小值。
4.解决不等式的有关问题:
(1)不等式恒成立问题(绝对不等式问题)可考虑值域。
f(x)(xA)的值域是[a,b]时,
不等式f(x)0恒成立的充要条件是f(x)max0,即b0;
不等式f(x)0恒成立的充要条件是f(x)min0,即a0。
f(x)(xA)的值域是(a,b)时,
不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。
(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。
5.导数在实际生活中的应用:
实际生活求解(小)值问题,通常都可转化为函数的最值.在利用导数来求函数最值时,一定要注意,极值点的单峰函数,极值点就是最值点,在解题时要加以说明。
高二数学学业水平的知识点概括3
1.计数原理知识点
①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)
2.排列(有序)与组合(无序)
Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!
Cnm=n!/(n-m)!m!
Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!
3.排列组合混合题的解题原则:先选后排,先分再排
排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.
捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)
插空法(解决相间问题)间接法和去杂法等等
在求解排列与组合应用问题时,应注意:
(1)把具体问题转化或归结为排列或组合问题;
(2)通过分析确定运用分类计数原理还是分步计数原理;
(3)分析题目条件,避免“选取”时重复和遗漏;
(4)列出式子计算和作答.
经常运用的数学思想是:
①分类讨论思想;②转化思想;③对称思想.
4.二项式定理知识点:
①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn
特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn
②主要性质和主要结论:对称性Cnm=Cnn-m
二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)
所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n
奇数项二项式系数的和=偶数项而是系数的和
Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1
③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。
5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。
6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。
高二数学学业水平的知识点概括相关文章:
★ 高二数学知识点总结
★ 高二数学知识点全总结
★ 高二数学知识点总结归纳
★ 高二数学知识点归纳总结
★ 高二数学考点知识点总结复习大纲
★ 高二数学知识点归纳小总结
★ 2018高二数学会考知识点总结
★ 高二数学知识点最新归纳
★ 高二数学知识点归纳
★ 高二数学知识点总结详细