欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 《圆锥的体积》导学预案(精选14篇)

《圆锥的体积》导学预案(精选14篇)

网友 分享 时间: 加入收藏 我要投稿 点赞

《圆锥的体积》导学预案(精选14篇)

《圆锥的体积》导学预案 篇1

  教学目标:1、组织学生进行实验,培养学生动手操作的能力,并推导出圆锥体积的计算公式。

  2、学生会运用圆锥的体积计算公式计算圆锥的体积。

  3、培养学生的观察、比较、分析、综合能力,发展学生的空间观念。

  4、渗透转化的数学思想。

  教学重点:圆锥体积公式的推导和应用。

  教学难点:圆锥体积公式的推导过程。

  教具准备:圆锥和圆柱、沙子、细绳、直尺。

  教学过程:

  一、复习导入:

  1、圆柱有哪些特征?怎样计算圆柱的体积?

  2、计算下面圆柱的体积(口答算式):

  (1)底面积是15平方厘米,高是4厘米;

  (2)底面半径是2分米,高是5分米;

  (3)底面直径是6米,高是2米。

  3、圆锥有哪些特征?

  4、创设情境:天气越来越暖和,商家举行饮料促销活动。盛饮料的杯子有圆柱和圆锥两种形状。演示让学生明白圆柱和圆锥等底等高。在两个杯子里分别装满饮料,一杯要4角钱,一杯要1元钱,如果打5折卖,分别卖多少钱?(2角、5角)你愿意买哪一杯?为什么?到底买哪一杯最划算呢?那就要知道这个圆柱和圆锥体积之间到底存在什么样的关系,带着这个问题,今天我们来研究圆锥的体积。

  二、实验操作,推导公式:

  1、什么是圆锥的体积?

  如果在圆柱或圆锥里面装满饮料或沙子,忽略厚度不计的话,饮料或沙子的体积就可以看作是圆柱或圆锥的体积。

  2、拿出自己做的等底等高的圆柱和圆锥来做实验。

  (1)把圆柱里面装满沙子,然后往圆锥里面倒,把圆锥到满,看可以到几次才能倒完。或者把圆锥装满,再往圆柱里面倒,看几次能把圆柱倒满。

  (2)汇报实验结果:在学生汇报时,教师要向学生明确,因为我们做的圆柱和圆锥尺寸上存在误差,沙子颗粒之间也有间隙,也会有一定的误差。所以实验结果可能会因此不太准确。

  (3)课件演示:初步总结实验结果

  (4)拿出不等底等高的圆柱和圆锥,小组合作再次实验,强调“等底等高”这个条件。

  (5)得出结论:圆锥的体积是与它等底等高的圆柱体积的。

  3、练习;一个圆柱的体积是45立方分米,与它等底等高的圆锥的体积是多少立方分米?

  照应前面,现在让你选择,你会买哪一杯饮料?为什么?

  4、根据圆柱的体积公式,总结出圆锥的体积计算公式是v=1/3sh

  三、应用公式:

  1、出示例1、一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

  读题分析,学生独立完成。

  2、练习

  (1)、一个圆锥的底面积是25平方分米,高是9分米。它的体积是多少立方分米?

  (2)、一个圆锥的底面半径是4厘米,高是21厘米。它的体积是多少?

  (3)、一个圆锥的底面直径是20厘米,高是9厘米。它的体积是多少?

  四、实践应用:

  1、将自己盘子里的沙土做成一个近似的圆锥形,如果想知道这个圆锥形沙堆的体积,需要测量哪些数据?该怎样测量呢?小组合作,利用老师给你准备的材料和工具,动手测量,讨论总结测量方法

  2、汇报讨论结果:

  五、全课总结:

《圆锥的体积》导学预案 篇2

  一,说教材:

  1,本课教学内容是义务教育课程标准实验教材小学数学六年级下册的第二单元《圆柱与圆锥》中《圆锥体积》的第一课时.教学内容为圆锥体积计算公式的推导,例2,例3,相应的"做一做"及练习四的习题.

  2,本课是在学生已经掌握了圆柱体积计算和认识了圆锥的基本特征的基础上学习的,是小学阶段几何知识的最后一课.学好这一部分内容,有利于进一步发展学生的空间观念,进一步解决一些实际问题打下基础.教材按照实验,观察,推导,归纳,实际应用的程序进行安排.

  3,教学重点:能正确运用圆锥体积计算公式求圆锥的体积.

  教学难点:理解圆锥体积公式的推导过程.

  4,教学目标:

  知识目标:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;

  能力目标:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;

  情感与价值观:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神.

  5,教具准备:等底等高的圆柱,圆锥一对,与圆柱等底不等高的圆锥一个,与圆柱等高不等底的圆锥一个.

  学具准备:让学生分组制作等底等高的圆柱,圆锥若干对,一定量的细沙.

  二,说教法:

  1,实验操作法.

  波利亚说过:"学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律,性质和联系."因此,我在课上设计了一个实验,通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现"圆锥的体积等于和它等底等高的圆柱体积的三分之一".利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力,思维能力和动手操作能力.

  2,比较法,讨论法,发现法三法优化组合.

  几何知识具有逻辑性,严密性,系统性的特点.因此在做实验时,我要求学生运用比较法,讨论法,发现法得出结论:"圆锥的体积等于与它等底等高圆柱体积的三分之一".然后再让学生讨论假如这句话中去掉"等底等高"这几个字还能否成立,并让学生用不等底等高的空圆锥,空圆柱盛沙做实验,发现有时装不下,有时不够装,有时刚好装满,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了"等底等高"这个重要的前提条件.

  三,说学法

  我在研究教法的同时,更重视对学生学法的指导.

  1,实验操作法.

  2,尝试练习法.

《圆锥的体积》导学预案 篇3

  教学内容:

  教材第11~17页圆锥的认识和体积计算、例1。

  教学要求:

  l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。

  2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。

  3.培养学生初步的空间观念和发展学生的思维能力。

  教具准备:

  长方体、正方体、圆柱体等,根据教材第167页自制的圆锥,演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的 的教具。

  教学重点:

  掌握圆锥的特征。

  教学难点:

  理解和掌握圆锥体积的计算公式。

  教学过程:

  一、铺垫孕伏:

  1. 说出圆柱的体积计算公式。

  2. 我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第16页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)

  二、自主探究:

  1.认识圆锥。

  我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?

  2.根据教材第16页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。

  3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。

  (1) 圆锥的底面是个圆,圆锥的侧面是一个曲面。

  (2) 认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系?

  4.学生练习。

  口答练习三第1题。

  5.教学圆锥高的测量方法。(见课本第17页有关内容)

  6.让学生根据上述方法测量自制圆锥的高。

  7.实验操作、推导圆锥体积计算公式。

  (1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第18页上面的`图)

  (2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?

  (3)实验操作,发现规律。

  在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的 。

  老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?

  (4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的 。

  (5)启发引导推导出计算公式并用字母表示。

  圆锥的体积=等底等高的圆柱的体积13=底面积高13

  用字母表示:V= 13 Sh

  (6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以 13 ?

  8.教学例l

  (1)出示例1

  (2)审题后可让学生根据圆锥体积计算公式自己试做。

  (3)批改讲评。注意些什么问题。

《圆锥的体积》导学预案 篇4

  教学目标:

  1.在理解圆锥体积公式的基础上,能运用公式解决有关实际问题,加深对知识的理 解。

  2.培养学生观察、实践能力。

  3.使学生在解决实际问题中感受数学与生活的密切联系。

  教学重、难点:结合实际问题运用所学的知识

  教学理念:

  1.数学源于生活,高于生活。

  2.学生动手实践,自主学习与合作交流相结合

  教学设计:

  一 回顾旧知:

  1.圆锥的体积公式是什么? S、h各表示什么?

  2.求圆锥的体积需要知道什么条件?

  3.还知道哪些条件也能计算出圆锥的体积?怎样计算?

  投影出示:

  (1)S = 10,h = 6 V = ?

  (2)r = 3,h = 10 V = ?

  (3)V = 9.42,h = 3 S = ?

  二 运用知识,解决实际问题

  1.(投影出示例2:一堆小麦图)师:有这样一堆小麦,你知道它的体积是多少吗? 怎么办呢?

  2.这些数据都是可以测量的。现在给你数据:高为1.2米,底面直径为4米

  (1)麦堆的底面积:__________________

  (2)麦堆的体积:____________________

  3.知道了体积,这堆小麦大约有多少重能知道吗?(每立方米小麦约735千克)(得 数保留整千克数)

  4.一个圆锥形沙堆,占地面积为3.14平方米,高1.5米。(1)沙堆的体积是多少平方 米?(2)如果每立方米沙约重1.6吨,这些沙子共重多少吨?(结果保留一位小数)

  5.用一根底面直径2分米,高10分米的圆柱体木料,削成一个的圆锥,要削去多 少立方分米的木料?

  (1)(出示图)什么情况下削出的圆锥是的?为什么?

  (2)削去的木料占原来木料的几分之几?

  (3)如果这是一块长4分米,宽2分米,高1分米的长方体木料,又在什么情况下削出 的圆锥是的呢?

  三 综合练习

  1.一个圆柱的底面积为81平方厘米,高12厘米,和它等体积等底的圆锥高为( )厘米;和它等体积等高的圆锥的底面积为( )厘米。

  2.将一个体积为16立方分米的圆锥形容器盛满水,倒入一个底面积为10平方分米的 圆柱体容器中,水面的高度是( )分米

  3.一个圆柱和一个圆锥的体积相等,如果圆柱的高是圆锥的4/5,那么圆柱的底面积是 圆锥的几分之几?

《圆锥的体积》导学预案 篇5

  教学目标

  1、推导出圆锥体积的计算公式。

  2、会运用圆锥的体积公式计算圆锥的体积。

  重点难点

  圆锥体积公式的推导过程。

  教学过程

  一、板书课题

  师:同学们,今天我们来学习“圆锥的体积”(板书课题)。

  二、出示目标

  理解并掌握圆锥的体积计算公式,并能运用公式解决实际问题。

  三、自学指导

  认真看课本第33页到第34页的例2和例3,边看书,边实验,理解圆锥的体积计算方法,并将例3补充完整。想:

  1、圆锥的体积与圆柱的`体积有什么关系?

  2、圆锥的体积计算公式是什么?用字母如何表示?

  5分钟后,比谁能正确地回答思考题并能做对检测题!

  检测题

  完成课本第34页“做一做”第1、2题。

  小组合作,校正答案

  后教

  口答

  一个体积是1413立方分米的铁块,可以制造成多少个底面半径是3分米、高是5分米的圆锥形零件?

  小组内互相说。

  当堂训练

  1、必做题:

  课本第35页第5、6、7题。(做在作业本上)

  2、选做题:

  有一个近似圆锥形的沙堆,底面周长是12.56米,高1.2米。把这些沙铺在一个长4米、宽3米的长方形沙坑里,可以铺多厚?(得数保留两位小数)

《圆锥的体积》导学预案 篇6

  教学过程:

  一、情境引入:

  (1)(老师出示铅锤):你有办法知道这个铅锤的体积吗?

  (2)学生发言:(把它放进盛水的量杯里,看水面升高多少……)

  (3)教师评价:这种方法可行,你利用上升的这部分水的体积就是铅锤的体积,间接地求出了铅锤的体积。真是一个爱动脑筋的孩子。

  (4)提出疑问:是不是每一个圆锥体都可以这样测量呢?(学生思考后发言)

  (5)引入:如果每个圆锥都这样测,太麻烦了!类似圆锥的麦堆也能这样测吗?(学生发表看法),那我们今天就来共同探究解决这类问题的普遍方法。(老师板书课题)

  设计意图:情景的创设,激发了学生学习的兴趣,使学生产生了自己想探索的需求,情绪高涨地积极投入到学习活动中去。

  二、新课探究

  (一)、探究圆锥体积的计算公式。

  1、大胆猜测:

  (1)圆锥的体积该怎样求呢?能不能通过我们已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

  (2)圆锥和我们认识的哪种立体图形有共同点?(学生答:圆柱)为什么?(圆柱的底面是圆,圆锥的底面也是圆……)

  (3)请你猜猜圆锥的体积和圆柱的体积有没有关系呢?有什么关系?(学生大胆猜测后,课件出示一个圆锥与3个底、高都不同的圆柱,其中一个圆柱与圆锥等底等高),请同学们猜一猜,哪一个圆锥的体积与这个圆柱的体积关系最密切?(学生答:等底等高的)

  (4)老师拿教具演示等底等高。拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的。”

  (5)学生用上面的方法验证自己做的圆锥与圆柱是否等底等高。(把等底等高的放在桌上备用。)

  2、试验探究圆锥和圆柱体积之间的关系

  我们通过试验来研究等底等高的圆锥体积和圆柱体积的关系。

  (1)课件出示试验记录单:

  a、提问:我们做几次实验?选择一个圆柱和圆锥我们比较什么?

  b、通过实验,你发现了什么?

  (2)学生分组用等底等高的圆柱圆锥试验,做好记录。教师在组间巡回指导。

  (3)汇报交流:

  你们的试验结果都一样吗?这个试验说明了什么?

  (4)老师用等底等高的圆柱圆锥装红色水演示。

  先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?把圆柱装满水往圆锥里倒,几次才能倒完?

  (教师让学生注意记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

  (5)学生拿小组内不等底等高的圆锥,换圆锥做这个试验几次,看看有没有这样的关系?(学生汇报,有的说我用自己的圆锥装了5次,才把圆柱装满;有的说,我装了2次半……)

  (6)试验小结:上面的试验说明了什么?(学生小组内讨论后交流)

  (这说明圆柱的体积是与它等底等高圆锥体积的3倍.也可以说成圆锥的体积是和它等底等高的圆柱的体积的三分之一。)

  3、公式推导

  (1)你能把上面的试验结果用式子表示吗?(学生尝试)

  (2)老师结合学生的回答板书:

  圆锥的体积公式及字母公式:

  (3)在探究圆锥体积公式的过程中,你认为哪个条件最重要?(等底等高)

  进一步强调等底等高的圆锥和圆柱才存在这种关系。

  设计意图:放手让学生自主探究,在实践中真正去体验圆柱和圆锥之间的关系。

  (二)圆锥的体积计算公式的应用

  1、已知圆锥的底面积和高,求圆锥的体积。

  (1)出示例2:现在你能求出老师手中的铅锤的体积吗?(已知铅锤底面积24平方厘米,高8厘米)学生尝试解决。

  (2)提问:已知圆锥的底面积和高应该怎样计算?

  (3)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算。

  2、已知圆锥的底面半径和高,求圆锥的体积。

  (1)出示例题:

  底面半径是3平方厘米,高12厘米的圆锥的体积。

  (2)学生尝试解答

  (3)提问:已知圆锥的底面半径和高,可以直接利用公式

  v=1/3兀r2h来求圆锥的体积。

  3、已知圆锥的底面直径和高,求圆锥的体积。

  (1)出示例3:

  工地上有一些沙子,堆起来近似于一个圆锥,这堆沙子大约多少立方米?(得数保留两位小数)

  (2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

  (3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

  (4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)

  (5)提问

  :已知圆锥的底面直径和高,可以直接利用公式

  v=1/3兀(d/2)2h来求圆锥的体积。

  设计意图:公式的延伸让学生对所学知识做到灵活应用,培养了学生活学活用的本领。

《圆锥的体积》导学预案 篇7

  各位领导、各位同仁:

  大家好!

  今天我说课的内容是《六年级数学》(人教版)下册第二单元《圆柱和圆锥》中的第二课时《圆锥的体积》。本次说课包括五个内容:说教材、说教法、说学法、说教学程序和说板书。

  一、说教材

  1、教材分析

  “圆锥的体积”教学是在学生学习了立体图形——长方体、正方体、圆柱体的基础上,认识了圆柱和圆锥的特征,会计算圆柱的表面积、体积的基础上进行教学的。

  教材突出了探索体积计算公式的过程,引导学生在装沙或装米的实验基础上进行公式推导。通过观察,比较,分析,推理,概括和抽象,自主发现圆锥的体积计算公式,进一步积累数学活动经验.经历数学化的过程,获得解决问题的方法.

  2、学情分析

  学生以前学习了长方体、正方体,在此前又学了由曲面和圆围成的立体图形——圆柱,且经历了圆柱体积计算方法的推导过程,具有了初步的类比思维意识。通过前一节《圆锥的认识》,学生对圆锥的特征也有了一些了解,对学生来说,求体积并非陌生的新知识,只是像圆锥这样学生认为不规则几何体的图形,求体积有困难。

  对于六年级的学生来说, 绝大多数学生的动手实践能力比较强,有一定的空间观念基础,但公式的推导过程却比较抽象、枯燥,对于他们来说该部分内容是一个难点。同时对于圆锥体积计算的实际运用,从以往的经验判断,学生对3倍的关系难以理解,教师应帮助学生理解。

  3、教学目标

  知识与技能目标:通过学生参与实验,从而推导出圆锥体积的计算公式,并运用公式计算圆锥的体积;解决一些有关圆锥体积的实际问题。

  过程与方法目标: 通过实验推导圆锥体积公式的过程,增强学生的实践操作能力,并培养学生观察、比较、分析、总结归纳的学习方法。

  情感与价值目标:通过实验,引导学生探索知识的内在联系,渗透转化思想,并感受发现知识的快乐,激发学习的兴趣,感受数学与生活的密切联系,培养学数学、用数学的乐趣。

  4、教学重难点

  教学重点:理解和掌握公式,能正确运用公式解决实际问题

  教学难点:圆锥体积公式的推导过程

  5、教具、学具准备

  教具:一个圆柱、2个与圆柱等底、等高的圆锥、沙子;学生自制的圆柱及各类型的圆锥若干、三角尺、直尺

  二、说教法

  在公式推导阶段,为了打破枯燥无味的公式推导过程,在教授本节课时,结合小学生的认知规律,以引导法、实验法、观察法,探索法为主,以讨论法、练习法为辅,实现教学目标。在教学中,从:①、让学生测量自制圆柱、圆锥的高(在上一节让学生自己动手制作圆柱、圆锥);②、让学生用自制的等底等高、等高不等底、等底不等高圆柱与圆锥分别装沙实验入手。通过学生自己动手测量、实验操作后总结实验规律。《圆锥的体积》说课稿

  通过小组实验、讨论、交流,归纳、推导出圆锥体积的计算公式:v= 《圆锥的体积》说课稿 sh

  在公式运用方面:采取逐步深入的模式,让学生讨论在:①、已知圆锥的高与底面半径;②、已知圆锥的高与底面直径;③、已知圆锥的高与底面周长三种情况下,如何使用公式计算。然后通过让学生列举身边的实例,引入实际运用。

  这样,既充分发挥了学生的主体作用,又调动学生积极主动地参与教学的全过程。力求为学生创造一个自主探索与合作交流的环境,引导学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。

  三、说学法

  以往的教学是教师处于主导地位,学生基本上是处于被动的听讲,被灌输者的被动地位,这样教出来的学生没有灵活性,随机应变的能力差,发现问题,分析问题,解决问题的能力差,学生的情感也低落。

  新课改要求:教师要把课堂和时间还给学生,让学生有充足的时间和广阔的空间学习、探讨、商量、研究,教师只是学生学习的指导者和参与者。

  针对本节,在学法上主要采取:

  1、学生在学习圆锥体积公式的推导时,通过自己动手进行操作实验、观察比较、讨论小结,最终推导出圆锥的计算公式,从而初步学会运用实验的方法来探索新知识。

  2、充分发挥学生的主体作用:学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生能说的尽量让学生自己说。学生不能想的,教师启发、引导学生想。

  3、教师提出与所学课程内容有关的恰当合理的问题,让学生在分析、讨论、探索的前提下争取自己解决,对于有一定困难的问题,老师再从中提醒、点拨。从而挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。

  四、说教学程序

  本节课的教学,我安排了6个教学程序:

  1、学生自主探索,预习

  第一步:回忆《圆锥的认识》

  (1) 让学生将他们准备的沙子或米拿到老师这里来,我们玩堆沙子游戏。我把它倒在桌子上,缓慢地倒,形成一个近似的圆锥,你们看这是什么形状?

  引导学生从沙堆的形状:底面是个圆,有一个顶点,侧面是一个斜面,抽象画出圆锥的图形(边提问、边引导、边画图板书)。

  顶点

  圆心

  高

  (2) 让学生在图中找出圆锥的顶点、画出圆锥的高。向学生明确:从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示板书这条高)。

  (3)图里画的这条高和底面圆的所有直径有什么关系?

  (4)怎样测量圆锥高?(让学生根据上述方法使用三角尺、直尺测量自制圆锥的高。)

  第二步:回忆圆柱体积的计算公式

  画一个与上图圆锥等底、等高的圆柱,指名学生回答,并板书公式:

  圆柱的体积=底面积高

  v圆柱= s·h

  第三步:课堂展示

  (1)我想知道堆起的沙堆的体积怎么办?

  (2)能不能也通过已学过的图形来求呢?转化成什么图形最合适?

  (3)你感觉它和前面学过的那个图形联系密切?

  (4)引导:可以通过实验的方法,得到计算圆锥(沙堆)体积的公式 。

  2、实验操作

  这个环节分两个步骤进行。

《圆锥的体积》导学预案 篇8

  以前教学《圆锥的体积》时多是先由教师演示等底等高情况下的三分之一,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但效果不太好,学生对等底等高这一重要前提条件,掌握得并不牢固,理解很模糊。为了让学生理解“等底等高”是判断圆锥的体积是圆柱体积的三分之一的前提条件,我就设计了以上的教学片断:让学生自选空圆柱和圆锥研究圆柱和圆锥体积之间的关系,学生通过动手操作得出的结论与书上的结论有很大的差异,有三分之一、四分之一、二分之一,思维出现激烈的碰撞,这时我没有评判结果,而是让学生经历一番观察、发现、合作、创新过程,得出圆锥体积等于等底等高的圆柱体积的三分之一,这样让学生装在看似混乱无序的实践中,增加对实验条件的辨别及信息的批判。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的达成完全是灵活机智地利用“错误”这一资源,所产生的效果。

  在平时的课堂教学中,我们要善于利用“错误”这一资源,让学生思考问题几经碰壁终于找到解决问题的方法,把思考问题的实际过程展现给学生看,让学生经过思维的碰撞,这样做实际上是非常富于启发性的.学习数学不仅要学会这道题的解法,而且更要学会这个解法是如何找到的。

  教学不仅仅是告诉,更需要经历。真正关注学生学习的过程,就要有效利用错误这一资源,教师要勇于乐于向学生提供充分研究的机会,帮助他们真正理解和掌握数学思想和方法,获得广泛的数学活动经验,这样,我们的课堂才是学生成长和成功的场所。

《圆锥的体积》导学预案 篇9

  教学目标:

  1、掌握圆锥的体积公式,能运用公式进行计算。

  2、在观察、实验、讨论等活动中探索圆锥的体积公式。

  3、体验数学与生活的密切联系,自觉养成合作交流与独立思考的良好习惯。

  教学重点:

  1、使学生探索出圆锥的体积公式。

  2、初步掌握圆锥体积的计算方法并解决一些实际问题。

  教学难点:探索圆锥体积的计算方法和推导过程。

  教学过程:

  一、情境导入  

  1、课件出示图片

  引导学生指图说出冰淇淋形状像我们学过的什么几何体?圆锥

  2、导入:同学们,冰淇淋形状像我们学过的圆锥体,你喜欢吃冰淇淋吗?那么冰淇淋体积有多大呢?这节课我们就来研究这个问题.(板书:圆锥的体积)

  二、探究新知:

  (一)圆锥的体积公式探讨 

  师:大家猜想,探求圆锥的体积,会和我们学习过的那种形体有关系?(圆柱)为什么?底面都是圆形

  师:我们的猜想是真的吗?圆柱和圆锥的体积之间有没有关系?有什么样的关系?让我们来做一个实验来验证一下吧!

  出示圆柱和圆锥图片,演示等底等高

  师:今天用来试验的教具有点特殊,他们的底相等,高也相等。

  教师引导提出要求:

  下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,用圆锥把圆柱装满需要几次,看它们之间有什么关系,并想一想通过实验你发现了什么?

  学生分组实验

  每小组推举一名学生汇报实验结果: 

  当圆柱和圆锥的底面积相等,高相等时,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.(教师多媒体演示)

  所以我们的结论是:

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的.

  3、教师出示两个大小悬殊的圆锥和圆柱,请同学猜测,圆锥的体积是否还是圆柱的三分之一?(进一步强调等底等高,教师演示)

  4、师生共同总结结论:圆锥的体积等于和它等底等高的圆柱体积的1/3。

  如果用用v表示圆锥的体积,s表示圆锥的底面积,h表示圆锥的高,圆锥的体积公式可以表示为:v= 1/3 sh

  (二)简单应用  尝试解答

  判断:

  1、圆柱的体积是圆锥体积的3倍。( )

  2、圆柱的体积大于与它等底等高的圆锥的体积。(  )

  3、圆锥的高是圆柱的高的3倍,它们的体积一定相等。( )

  填空:

  1、一个圆柱的体积是75.36m³,与它等底等高的圆锥的体积是(  )m³。

  2、一个圆锥的体积是141.3cm³,与它等底等高的圆柱的体积是(  )cm³。

  例题:(出示课件)

  工地上有一些沙子,堆起来近似于一个圆锥,这堆沙子大约多少立方米?(得数保留两位小数。)

  (生独立列式计算,小组交流,是指名组长出示答案)

  巩固练习,运用拓展

  一、求下图中圆锥体积。(略)

  二、 一堆煤成圆锥形,底面半径是1.5m,高是1.1m。这堆煤的体积是多少?如果每立方米的煤约重1.4吨,这堆煤约有多少吨?(得数保留整数。)

  三、提高拓展

  有一根底面直径是6厘米,长是15厘米的圆柱形钢材,要把它削成与它等底等高的圆锥形零件。圆锥的体积是多少立方厘米?要削去钢材多少立方厘米?

  总结:你学到了什么?

  板书设计:

  圆锥的体积

  等底等高    v锥=1/3v柱=1/3sh

  教学内容:

  本节教材是人教版六年级数学下册第二单元“圆锥的体积”部分,课本第25-26页。这部分内容是在学生已经认识圆锥的特征和会圆柱体积计算的基础上学习的。学习过程中要引导学生探索并掌握圆锥的体积公式。然后能够根据公式及变形公式进行计算。

《圆锥的体积》导学预案 篇10

  教学目标:

  1、通过动手操作参与实验,发现等底等高的圆柱体和圆锥体之间的关系,从而得出圆锥体的体积公式。

  2、能运用公式解答有关的实际问题。

  3、渗透转化、实验、猜测、验证等数学思想方法,培养动手能力和探索意识。

  教学重点:通过实验的方法,得到计算圆锥体积的公式。

  教学难点:运用圆锥体积公式正确地计算体积。

  教学过程:

  一、创设情境,引发猜想

  在一个闷热的中午,小白兔买了一个圆柱形的雪糕,狐狸买了一个圆锥形的雪糕,这两个雪糕是等底等高的。这是狐狸要用它的雪糕和小白兔换。你觉得小白兔有没有上当?如果狐狸用两个雪糕和小白兔换你觉得公平吗?假如你是小白兔,狐狸有几个雪糕你才肯和它换呢?把你的想法与小组的同学交流一下,再向全班同学汇报。

  小白兔究竟跟狐狸怎样交换才公平合理呢?学习了“圆锥的体积”后,就会弄明白这个问题。

  二、自主探索,操作实验

  1、出示学习提纲

  (1) 利用手中的学具,动手操作,通过试验,你发现圆柱的体积与圆锥体积之间有什么关系?

  (2) 你们小组是怎样进行实验的?

  (3) 你能根据实验结果说出圆锥体的体积公式吗?

  (4) 要求圆锥体积需要知道哪两个条件?

  2、小组合作学习

  3、回报交流

  结论:圆锥的体积是等底等高的圆柱体积的1/3。

  公式:v=1/3sh

  4、问题解决

  小白兔和狐狸怎样交换才能公平合理呢?它需要什么前提条件?

  5、运用公式解决问题

  教学例题1和例题2

  三、巩固练习 

  1、圆锥的底面积是5,高是3,体积是

  2、圆锥的底面积是10,高是9,体积是

  3、求下面各圆锥的体积.

  (1)底面面积是7.8平方米,高是1.8米.

  (2)底面半径是4厘米,高是21厘米.

  (3)底面直径是6分米,高是6分米.

  4、判断对错,并说明理由.

  (1)圆柱的体积相当于圆锥体积的3倍.( )

  (2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1.( )

  (3)一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米.( )

  四、拓展延伸

  一个圆锥的底面周长是314厘米,高是9厘米,它的体积是多少立方厘米?

  五、谈谈收获

  六、作业

《圆锥的体积》导学预案 篇11

  一.教学内容:人教版六(下)数学课本2526页例2、例3

  二.学情分析:《圆锥的体积》是学生在学习了平面图形以及长方体、正方体、圆柱体这三种立体图形的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积,这是发展学生空间观念的内容。包括圆锥体积计算公式的推导,圆锥体积计算公式的理解及具体运用。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱体和圆锥之间的本质联系、提高几何体知识的掌握水平,为学习初中几何打下基础,同时还可以提高学生运用所学的数学知识和方法解决一些简单实际问题的能力。   三.教学目标1、整体教学目标(1)通过实验,学生自主探索出圆锥体积和圆柱体积之间的关系,得出圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。(2)  借助已有的生活和学习经验,渗透转化思想,在小组活动过程中,培养学生的动手操作能力和自主探索能力。 (3) 通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。2、分层教学目标下限目标:能初步感知圆锥体积公式的推导过程,运用公式计算圆锥的体积。上限目标:带领组内成员推导圆锥体积公式,并能运用圆锥体积公式灵活解决一些实际问题。   四.教学重点:掌握圆锥体积的计算公式。      教学难点正确探索出圆锥体积和圆柱体积之间的关系。   五.教学准备:准备若干同样的圆柱形容器,若干与圆柱等底等高和不等底不等高的圆锥形容器,沙子和水,多媒体课件。座位安排:组间同质,组内异质。1号是组长、2号是副组长、3号是一般的组员、4号为学习能力相对弱的学生。1号和4号同桌。   六.教学方法1、教法:我在设计教法时,根据小班化特点、本节课的特点,结合小学生的认知规律,采用以下几种教法:(1)实验操作法。我在学生已经认识圆锥的基础上,设计了一个实验,利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力,为进一步学习,提供了丰富的感性材料,从而逐步从具体的操作过渡到内部语言。(2)比较法、讨论法、发现法三法优化组合。实验时,要求学生运用比较法、讨论法、发现法得出结论:“圆锥的体积等于与它等底等高圆柱体积的三分之一”。2、学法:新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究,( 1)实验转化法。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备,也就是各自准备好等底等高的圆柱、圆锥一对,一定量的沙;其次,告诉他们操作的方法步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。(2)尝试练习法。本节课在教学例题3时,让学生尝试自己独立解答,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。   七.教学流程

  教学过程 设计意图    一. 创设情境,导入新课     1.故事情境,渗透思想     上课伊始,师:你知道《曹冲称象》的故事吗?(多媒体屏幕显示画面) 2.出示铅锤,引出课题 师:你有办法知道这个铅锤的体积吗? 学生讨论、交流。 预设学生可能会想到用“排水法”。 如果要测量建筑物上圆锥形尖顶的体积,还能用这种方法吗? 最简便的方法就是知道圆锥的体积计算公式。---   揭题板书:圆锥的体积 3.独立思考,大胆猜想。 猜一猜,圆锥的体积和什么有关? 根据学生的各种猜想,教师进一步引导学生思考,我们学过哪些图形的体积计算?圆锥的体积与哪种图形的体积有关? 4.观察比较,反馈交流 师举起圆柱、圆锥教具,把圆锥体套在透明的圆柱体里,让学生想一想它们的体 二.自主探究,合作交流 积之间会有什么样的关系。(生猜测,圆柱的体积可能是圆锥的2倍、3倍、4倍或其他) 1.进行实验、收集数据。  师:圆锥的体积究竟和圆柱体积有什么关系?请同学们亲自验证。 这里有沙子和水,还有等底等高和不等底不等高的各种圆柱、圆锥的模具。实验要求:各组根据需要选用实验用具,小组成员分工合作,轮流操作,作好实验数据的收集整理。   1号圆锥 2号圆锥 3号圆锥 次 数       与圆柱是否等底等高       如何实验?分小组先议一议,再动手。(学生动手操作,教师巡视,发现问题及时指导。实验结束将小组记录单进行展示) 2.组际交流,得出结论: (1)各组说说各种实验结果。  (2)观察数据,你发现了什么?(发现大多数情况下圆柱能装下三个圆锥的沙或水,也有两次多或四次不到等不同结果)  (3)进一步观察分析,什么情况下圆柱刚好能装下三个圆锥的沙或水?(各组互相观察各自的圆柱圆锥,发现只要是等底等高,圆柱的体积都是圆锥体积的3倍,也就是说在等底等高的情况下圆锥体积是圆柱体积的。) (4)是不是所有符合等底等高条件的圆柱、圆锥都具备这样的关系呢?(师用标准教具装水实验一次) (5)结论: ①圆锥的体积v等于和它等底等高圆柱体积的三分之一。 ②等底不等高的圆锥体与圆柱体,圆锥的体积不是圆柱体积的三分之一。 ③等高不等底的圆锥体与圆柱体,圆锥的体积不是圆柱体积的三分之一。 3.启发引导,推导公式 师:在 sh中,“sh”表示什么?为什么还要乘 ? 师:要求圆锥的体积必须知道什么条件?还要注意什么? 师板书:圆锥体体积v= sh 三.简单应用 尝试解答 工地上有一些沙子,堆起来近似于一个圆锥,圆锥的底面直径是 4米,高是1.2米。这堆沙子大约多少立方米?(得数保留两位小数) 1.尝试计算。 2,集体讲评。 3.计算时要注意什么问题? 四.分层练习,运用拓展 1.基础练习(填表) 图形名称 已知条件 表面积 体积 圆柱 底面半径6cm     圆锥 底面积7.8cm,高1.8cm ——   圆锥 底面直径6dm,高6dm ——   2.综合性练习 一个圆锥的底面积是15平方厘米,体积是60立方厘米,它的高是多少? 3.实践性练习 测量课前出示的铅锤的高和底面直径,计算铅锤的体积。  4.开放性练习 一段圆柱形钢材,底面直径10厘米,高是15厘米,把它加工成一个圆锥零件。根据以上条件信息,你想提出什么问题?能得出哪些数学结论?      五.归纳收获,感悟体验    1、上了这些课,你有什么收获?(互说中系统整理)     2、用什么方法获取的?哪组表示最棒?     3、通过这节课的学习,你有什么新的想法?还有什么问题?      六.回归生活,延伸课堂  我们学校目前下在搞基建,操场上有好几堆圆锥形的沙堆,课余时间,各小组可以丈量计算这些沙堆的体积。注意平安噢!老师预祝你们胜利! 创设有儿童情趣。同学从熟悉的故事《曹操称象》中,理解了“大象”转化为“石头”的等量代换的数学方法,渗透转化的方法,为新知识作好铺垫和准备。 从铅垂直观引入,引发同学大胆猜测,发挥集体智慧,在不知道圆锥体积计算公式的情况下,讨论交流得出用“排水法”计算铅锤体积。     “猜想”有利于活跃课堂气氛,调动学生的课堂气氛,调动学生的学习积极性。)  通过探究,让学生尝试着理解圆柱和圆锥的关系,学生经历了独立思考的过程,有利于培养学生的逻辑思维和表达能力。合作前有明确的目的要求,分工合作。合作过程中学习能力好的学生带领学习困难的学生,组内成员有各自的任务,完成情况较好。           这个环节是这节课的重点和难点,安排每一位同学都动口说说实验的结论,加深对实验的理解。通过实验,既培养了学生的操作能力、合作能力,又让学生体会到实验是科学研究的  好方法,养成实事求是的科学态度。                            通过尝试练,加深对圆柱和圆锥关系的理解,深化所学内容。       作业的设计体现分层性。学习能力弱的学生针对本节课的内容做一些巩固性的练习;而学有余力的孩子可以在自己原有的水平上有所提高,可以把知识进行拓展。有利于不同层次的学生在原有的基础上有所提高,较好地落实了“人人掌握数学”和“不同的人学习不同的数学”这一教学理念。       关注学生的知识与技能的同时也注重学生的情感、态度、价值观,把自己收获与同学交流,既是对一节课自己知识掌握情况的回顾,也是对自己学习行为的评价。           开放时空,课堂延伸,真正让学生成为学习的主人,用数学知识解决生活实际问题,培养学生应用数学的意识和能力。

  八.板书设计 圆锥的体积圆柱的体积=底面积高                      圆锥的体积= 等底等高圆柱的体积= 底面积高字母公式:v= sh

《圆锥的体积》导学预案 篇12

  【教学内容】

  圆锥的体积(1)(教材第33页例2)。

  【教学目标】

  1、参与实验,从而推导出圆锥体积的计算公式,会运用圆锥的体积公式计算圆锥的体积。

  2、培养学生初步的空间观念,让学生经历圆锥体积公式的推导过程,体验观察、比较、分析、总结、归纳的学习方法。

  【重点难点】

  圆锥体积公式的推导过程。

  【教学准备】

  同样的圆柱形容器若干,与圆柱等底等高的圆锥形容器,与圆柱不等底等高的圆锥形容器若干,沙子和水。

  【情景导入】

  1、复习旧知,作出铺垫。

  (1)教师用电脑出示一个透明的圆锥。

  教师:同学们仔细观察,圆锥有哪些主要特征呢?

  (2)复习高的概念。

  A、什么叫做圆锥的高?

  B、请一名同学上来指出用橡皮泥制作的圆祝型的高。(提供刀片、橡皮泥模型等,帮助学生进行操作)

  2、创设情境,引发猜想。

  (1)电脑呈现出动画情境(伴图配音)。

  夏天,森林里闷热极了,小动物们都热得透不过气来。一只小白兔去“动物超市”购物,它在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(动画中圆柱形和圆锥形的雪糕是等底等高的)

  (2)引导学生围绕问题展开讨论。

  问题一:狐狸贪婪地问:“小白兔,用我手中的雪糕跟你换一个怎么样?”(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)

  问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)

  问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法跟小组交流一下,再向全班同学汇报)

  过渡:小白兔究竟跟狐狸怎样交换才合理呢?学习了“圆锥的体积”后,大家就会弄明白这个问题。

  【新课讲授】

  自主探究,操作实验

  下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积之间的关系,解决电脑博士给我们提出的问题。

  出示思考题:通过实验,你们发现圆柱的体积和圆锥的体积之间有什么关系?你们的小组是怎样进行实验的?

  (1)小组实验。

  A、学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的也有5倍关系的。)

  B、同组的`学生做完实验后,进行交流,并把实验结果写在黑板上。

  (2)全班交流。

  ①组织收集信息。

  学生汇报时可能会出现下面几种情况,教师把这些信息逐一呈现在黑板上:

  A、圆柱的体积正好等于圆锥体积的3倍。

  B、圆柱的体积不是圆锥体积的3倍。

  c、圆柱的体积正好等于圆锥体积的8倍。

  D、圆柱的体积正好等于圆锥体积的5倍。

  E、圆柱的体积是等底等高圆锥体积的3倍。

  f、圆锥的体积是等底等高圆柱体积的。

  ②引导整理信息。指导学生仔细观察,把黑板上的信息分类整理。(根据学生反馈的实际情况灵活进行)

  ③参与处理信息。围绕3倍关系情况讨论:请这几个小组同学说出他们是怎样通过实验得出这一结论的?哪个小组得出的结论更科学合理一些?

  圆锥的体积是等底等高圆柱体积的。(突出等底等高,并请学生拿出实验用的器材,自己比划、验证这个结论)引导学生自主修正另外两个结论。

  (3)诱导反思。为什么有两个实验小组的结果不是3倍的关系呢?

  (4)推导公式。尝试运用信息推导圆锥的体积公式。这里的sh表示什么?为什么要乘?要求圆锥体积需要知道几个条件?

  (5)解决问题。童话故事中的小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(动画演示:等底等高,之后播放狐狸拿着圆锥形雪糕离去的画面)

  【课堂作业】

  完成教材第34页“做一做”第1题。

  先组织学生在练习本上算一算,然后指名汇报。

  答案:13×19×12=76(cm3)

  【课堂小结】

  教师:请你说说知道哪些条件就可以求圆锥的体积?学生自由交流。

  【课后作业】

  1、完成练习册中本课时的练习。

  2、教材第35页第3、4、5题。

  答案:第3题:提示:可以利用直尺、软尺等工具测量出圆锥形实物的底面直径(或者底面周长)和高,再根据V圆锥=1/3sh计算出该物体的体积。

  第4题:(1)25、12(2)423、9

  第5题:(1)×(2)√(3)×

《圆锥的体积》导学预案 篇13

  教学内容:

  第25~26页,例2、例3及练习四的第3~8题。

  教学目的:

  1、过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。

  2、已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

  3、过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

  教学重点:

  掌握圆锥体积的计算公式。

  教学难点:

  正确探索出圆锥体积和圆柱体积之间的关系

  教具准备:

  每生准备一组等底等高的圆柱和圆锥模具,大米,水,沙子等

  教学过程:

  一、复习

  1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)

  2、圆柱体积的计算公式是什么?

  指名学生回答,并板书公式:“圆柱的体积=底面积×高”。

  二、新课

  1、教学圆锥体积的计算公式。

  (1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的.

  (2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

  (3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

  组织学生实验分组合作学习

  (4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?

  (教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

  (5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的 )

  学生叙述实验过程并总结结论,得出计算公式

  板书:圆锥的体积= 1/3×圆柱的体积=1/3 ×底面积×高,

  字母公式:V= 1/3Sh

  2、教学练习四第3题

  (1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?

  (2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。

  3、巩固练习:完成练习四第4题。

  4、教学例3.

  (1)出示例3

  已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。

  (2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

  (3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

  (4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)

  四、巩固练习

  1、做练习四的第7题。

  学生先独立判断这三句话是否正确,然后全般核对评讲。

  2、做练习四的第8题。

  (1)引导学生学生思考回答以下问题

  ① 这道题已知什么?求什么?

  ② 求圆锥的体积必须知道什么?

  ③ 求出这堆煤的体积后,应该怎样计算这堆煤的重量?

  (2)让学生做在练习本上,教师巡视,做完后集体订正。

  3、做练习四的第6题。

  (1)指名学生先后回答下面问题

  ① 圆柱的侧面积等于多少?

  ② 圆柱的表面积的含义是什么?怎样计算?

  ③ 圆柱体积的计算公式是什么?

  ④ 圆锥的体积公式是什么?

  (2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。

  五、课堂练习

  1、填空

  (1)圆锥体体积的计算公式( )

  (2)等底等高的圆锥体是圆柱体体积的( ),圆柱体是圆锥体体积的。

  (3)等底等高的圆锥体体积是3立方厘米,圆柱体的体积是。

  (4)体积和底面积相等的圆柱与圆锥,圆柱高5厘米,圆锥高。

  (5)体积和高相等的圆柱与圆锥,圆锥底面积15平方厘米,圆柱底面积是( )。

  (6)等底等高的圆柱和圆锥,圆柱比圆锥的体积大( )。

  2、判断

  (1)圆柱体的体积一定比圆锥体的体积大 .

  (2)圆锥的体积等于和它等底等高的圆柱体的1/3.

  (3)圆锥体、正方体、长方体的体积都等于底面积×高。

  (4)圆锥的高是圆柱高的3倍,且底面积相等,那么他们的体积相等。

  3、补充习题

  (1)一堆煤成圆锥形,底面半径是1.5米,高是1.1米。这堆煤的体积是多少?如果每立方米的煤重约1.4吨,这堆煤有多少吨?

  (2)一个圆锥形沙堆,底面直径是28.26平方米,高是2.5米用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?

  (3)一堆圆锥形的煤体积是12立方米,底面积是6平方米,高是多少?

  (4)在一个底面半径是10cm的圆柱形水桶中装有水,把一 个底面半径为5cm的圆锥形铁锤浸没在水中,水面上升了1cm,试问铁锤的高是多少?

  (5)等底等高的圆柱和圆锥,圆柱的体积比圆锥的体积多24立方分米,圆柱的体积是多少立方分米?

  六、总结

  这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?

  教学反思:

  从本节课的教学任务来看,主要是构建“圆锥的体积是等底等高的圆柱的体积的三分之一”这一概念的认识,而这一认识的形成,靠文字和观摩演示都是苍白无力的,它需要学生发自内心的需要,全身心的体验,使学生在实验中对自己的实验过程和结论进行对比和反思,悟出等底等高的必要性,从而明确圆锥的体积是等底等高的圆柱的体积的三分之一”的具体含义。

《圆锥的体积》导学预案 篇14

  (一)创设情境,导入新课

  师:炎热的夏天到了,小明想买一个冰淇淋吃,冰柜里各种形状的冰淇淋可真多,而价钱一样,买哪种划算呢?这可把小明难住了。因为这里暗藏着一个数学问题,谁能帮助小明解决?(课件出示四种形状的冰淇淋:圆柱、圆锥、长方体、正方体)。

  师:买哪一个划算,这里暗藏的数学问题是什么?

  生:求出这四个冰淇淋的体积,买体积大的就划算。

  师:如果给出相应的条件,你会求四个几何体的体积吗?

  (出示教具---板书3个公式  )

  生:圆锥的体积不会求。

  师:你们想学吗?这节课我们一起研究圆锥体积的计算方法。(板书课题)

  师:在这节课上,你们希望学到哪些知识呢?

  (生自主回答,确立学习目标)

  师:好,我们一起努力吧!

  (二)自主探索,合作交流

  1、直观引入  直觉猜想

  ①教师演示刨铅笔:把一支圆柱形铅笔的笔头刨成圆锥形。

  ②引导学生观察,并思考:你觉得圆锥的体积与相应的圆柱体积之间有联系吗?你认为有什么联系?

  ③教师鼓励学生大胆猜想。(板书:v柱=3v锥)  ?    猜测

  (三)探究新知:

  〈一〉实践操作,揭示公式

  1:师:下面我们利用实验的方法来探究圆锥体积的计算方法,以学习小组为单位,拿出准备好的实验器材(圆柱,圆锥三组,细沙或大米),实验时,把两个容器比一比、量一量,看它们之间有什么关系,然后往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.通过实验你发现了什么?填写实验报告单。(课件出示实验报告单)

  实验报告单

  组

  实验器材

  实验结果(次数)

  等底不等高的圆锥、圆柱

  等高不等底的圆锥、圆柱

  不等高也不等底的圆锥、圆柱

  等底等高的圆锥、圆柱

  2:学生分组实验,教师巡视。

  3:学生汇报实验结果:实物投影展示实验报告单。

  4:引导学生发现:组际交流,得出结论:

  (小组代表把实验过程展示)----说----实验报告

  结论1:圆柱体的体积等于和它等底等高的圆锥体体积的3倍

  结论2:圆锥的体积等于和它等底等高圆柱体积的 1/3

  结论3:等底不等高的圆锥体与圆柱体,圆锥的体积不是圆柱体积的三分之一。

  结论4:等高不等底的圆锥体与圆柱体,圆锥的体积不是圆柱体积的三分之一。

  〈二>电脑演示  实验验证

  多媒体屏幕显示:(课件)

  <三>启发引导  推导公式

  1、实验结果同样表明:①等底等高 ----圆柱体积等于圆锥体积的3倍

  ②等底等高-----圆锥体积等于圆柱体积的

  2、通过学生动手操作和屏幕显示,启发学生思考:

  谁能聪明地概括出圆锥的体积计算公式?根据学生回答后板书:

  v锥=    sh

  3、师:这里sh表示什么?为什么要乘1/3?

  师:要求圆锥的体积必须知道什么条件?还要注意什么?

  <四〉运用公式,自学例题(课件)

  1. 出示题目。

  2. 学生读题后,找已知条件和要求问题。

  3. 根据什么列式计算。

  4. 学生尝试解答,指名板演。

  5. 集体订正后总结解题方法。

  6. 看书质疑,并把课本例题补充完整。

  4、回到谈话引入:要求圆锥形冰淇淋的体积,必须测量出哪些数据?并出示四个几何体求体积的数据,帮助小明解决难题。

221381
领取福利

微信扫码领取福利

《圆锥的体积》导学预案(精选14篇)

微信扫码分享