欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 《周长》教学设计(精选16篇)

《周长》教学设计(精选16篇)

网友 分享 时间: 加入收藏 我要投稿 点赞

《周长》教学设计(精选16篇)

《周长》教学设计 篇1

  周长单元教学目标:1、结合具体事物或图形,通过观察、操作等活动,认识周长。2、结合具体情境,通过观察、度量及比较、归纳等活动,探索并掌握长方形、正方形的周长的计算方法。3、能测量并计算三角形、平行四边形、长方形、正方形等图形的周长。4、能运用长方形、正方形的周长计算方法解决实际生活中的简单问题,感受数学在日常生活中的应用。5、结合具体情境,感知图形知识与实际生活的密切联系,建立初步的空间观念。单元教学重点难点:1、重点:1探索并掌握长方形、正方形的周长的计算方法。         2能测量和计算具体事物和三角形、长方形、正方形等图形的周长。         3能用长方形、正方形的周长的计算方法等知识解决简单实际问题。2、难点:指出并能测量具体图形的周长,探索并掌握长方形、正方形的周长的计算方法。课时安排:6课时

  什么是周长教学目标:1、结合具体事物或图形,通过观察、操作等活动,认识周长。2、能测量并计算三角形、平行四边形、梯形等图形的周长。3、结合具体情境,感知周长与实际生活的密切联系。教学重点:结合具体事物或图形,通过观察、操作等活动,认识周长。教学难点:能测量并计算三角形、平行四边形、梯形等图形的周长。教学用具:线、直尺、皮尺。教学设计:一、情境导入:同学们,你们见过的树叶都式什么形状的?你们能画出来吗?今天我们就来一起画一画。二、探索新知:1、请同学们用一笔画出一片你所熟悉的树叶的外形。2、小组汇报学生各自尝试画的树叶。3、你们有办法量出画的那片树叶边线的长度吗?请试一试。4、学生单独测量或小组合作测量一片树叶。5、请同学们汇报测量方法和结果。(1)用直尺一段一段地量,然后加起来。(2)先用线来测量这条曲线,再用尺来量线的长度。(3)用皮尺沿着所画的边线直接测量。6、同学们都很聪明、能干,你们刚才量的是树叶一周的长度,也就式树叶的周长。我们把一个图形一周的长度叫做这个图形的周长。三、拓展应用1、摸一摸。(1)课桌面的边线。(2)数学书封面的边线。2、实践活动(1)量一量你的腰围和头围,并与同伴说一说。(2)量一量一片树叶的周长,并与同伴说说你的方法。3、连一连(1)用彩色笔描出下面图形的边线。

  (2)量一量;、算一算下面图形的周长。(3)每小题两个图形的周长一样吗?①②

  课后反思:

《周长》教学设计 篇2

  周   长  教学设计

  总第18课时教学目标: 1、通过活动使学生理解、掌握周长的概念 。2、培养学生动手操作及概括能力。 3、使学生获得学习成功的体验。 教学过程: 一、认识周长,总结概念1、活动一 ⑴摸一摸自己的腰在哪,你能用软尺量一量自己腰的长度吗? ⑵谁能说说你的腰的长度? ⑶你的腰一圈的长度我们叫做腰的周长。 ⑷摸一摸你腰的周长在哪。 2、活动二 ⑴出示以各种实物:钟面、数学书、国旗、叶子。⑵你能指出这个钟面的周长在哪吗? ⑶那么数学书、国旗、叶子的周长又在哪呢?请你们同桌互相指一指。 ⑷全班汇报、互相指正。 3、活动三 ⑴出示课本第41页图形。⑵这些图形的周长在哪里?请你用笔描一描。 ⑶学生独立完成后汇报交流。4、周长的概念 ⑴通过刚才我们量腰的周长,找数学书、国旗、叶子的周长,描这些图形的周长,你能用自己的话说说什么是周长吗? ⑵学生说一说汇报交流。⑶打开课本看看书什么叫做周长,全班读一读。 ⑷图形一周的长度就叫做周长,为什么要加上封闭两个字呢? 二、巩固概念,探索方法1、你有办法知道这些图形或实物的周长吗?自己选一个看看你能用几种方法知道它的周长,然后再在四人小组里说一说。 2、学生活动。 3、汇报交流:你选的是哪个图形?你是怎么知道它的周长的?还有什么办法吗? 三、实践应用,概括总结 1、 周长在生活中应用和广泛,你能举出一个周长在生活中运用的例子吗?这节课你有什么收获?还有问题吗? 2、要计算下图的周长,你准备量哪几条边?最少量几条?为什么? 3、思考题: 小冬沿着跑道跑一圈,他跑的总长度是不是运动场的周长?在长方形镜框的四周围上铁皮,铁皮的长度是不是这个长方形镜框的周长?

《周长》教学设计 篇3

  教学内容:教材数学第五册《周长》(p66~p68)

  教学目标:

  1.通过“描一描”“摸一摸”“量一量”等活动,体验感悟周长的含义。

  2.借助实际操作,结合生活情境,进一步发展学生的空间观念,培养学生发现问题、探索规律的能力以及合作意识、创新意识。

  3、让学生在活动中感受生活中处处有数学,并能综合运用所学数学知识解决生活中的简单问题。

  教材分析:

  认识周长,考虑到学生对“周长”的概念比较陌生,教材选择了学生比较喜欢、熟悉的小布艺这件物品,结合实际生活中,工厂生产小布艺前都要先剪好材料的实际需要,提出“生产两种小布艺,怎样确定每个小布艺的共边需要剪多长?”的实际问题,并要求学生合作研究解决。在交流小组不同测量方法基础上,通过“花边的长就是小布艺布料的周长”引出周长的概念。接着设计了指出硬币面、课本封面、课桌面边线的活动,进而告诉学生“它们边线的长度就是它们的周长”。

  学情分析:

  从“数学学习与学生的身心发展”的研究表明,每个学生都有分析解决问题的创造性潜能,都有一种与生俱来把自己当成探索者、研究者、发现者的本能,而且学生已经了解了三角形、平行四边形、长方形、正方形等平面图形的基本特征,城市的孩子通过美术课也理解了“边线”“轮廓”这些词的含义,因此教材让学生在“描一描”“摸一摸”“量一量”“想一想”“算一算”的基础上来理解周长的含义,更有利于学生的掌握。在教师的引导下,让学生“动”起来,使他们学会使用观察、比较的方法发现问题和提出问题,并对问题进行猜想、尝试和验证,有利于促进学生思维的发展。

  教学流程预案:

  一、情景导入:

  (课件):秋天到了,秋姑娘带着礼物来到了我们身边,想知道是什么礼物吗?)(出示:叶子)秋天到,落叶飘,秋姑娘用这美丽的叶子来装点我们的生活,装扮我们的秋天。这份礼物,你喜欢吗?快拿出你的来看看吧!

  二、实践探究:

  (一)描周长

  1、选择出你最喜欢的一片叶子,把它的轮廓描在纸上。

  2、说说你是怎样描的?

  3、刚才我们所描的叶子一周的长度,就是这片叶子的周长。

  4、看蚂蚁爬叶子和蜻蜓的图形,介绍图形一周的长度就是它的周长。 (二)摸周长

  选择身边物体某一个面,摸一摸它的周长。

  (三)量周长

  1、量生活中的周长:腰围和头围。

  2、量老师给的物品的周长:请同学们利用手中的工具,想办法知道它们的周长是多少。先估一估,再实际去量一量,算一算。

  小结:测量不同图形的周长,就要选择不同的测量工具,这样就可以帮助我们提高测量的效率和准确性。

  3、量一量、

  估计 测量

  铅笔盒盖面的周长  

  数学课本封面的周长  

  鞋底面的周长  

  三、拓展练习:

  看来,周长在我们的生活中用处可真不少!现在,小蚂蚁就遇到了困难,你能来帮助它吗?秋天,小蚂蚁开始准备过冬的食物了。它背了这么多的东西,现在有两条回家的路,就请你帮它选一条吧!

  四、总结:

  同学们现在正处在人生的春季,希望大家能从现在开始,走好每一步,来迎接人 生最灿烂的丰收季节!

《周长》教学设计 篇4

  教学内容:《义务教育课程标准实验教科书 数学(三年级上册)》第41页的内容。

  教学目的

  1. 通过说一说、摸一摸等活动使学生理解、掌握周长的概念。

  2. 通过实践操作,探究周长测量策略,培养学生动手操作能力及概括能力。

  3. 培养学生合作探究能力。

  教学重点

  使学生建立周长的概念。

  教学难点

  引导学生探究周长的测量策略。

  教学过程

  (展示各图形)

  说说是什么图形,好看吗?

  老师想将这些图形制作成小相框,有同学建议将这些图形用各色彩带镶上边,让小相框更美丽。

  制作中遇到问题:每个图形要多少镶边材料呢?多了浪费,少了不好看。先测知边长(周长),再剪材料。

  量哪儿好呢?请指一指。(一生上台指,其他书空。)

  强调:看清从哪开始,绕边一周,回到起点,头尾相接,手指要紧贴图形边缘。

  二、探究新知

  1. 建立“周长”概念。

  (1)今天咱们的课堂来了一位数学王国的朋友──周长。

  (板书:周长)

  “周长”朋友的名字里体现了他的特点。

  谁认识这位朋友?请给大家介绍一下。

  (学生介绍)

  看看书本怎么介绍的,课本p41,读一读。

  “封闭图形一周的长度,是它的周长。”

  通过书本和同学的介绍你了解“周长”这个朋友吗?

  (2)质疑“封闭”。(学生解答:头尾相接。)

  小结:所有线段、曲线首尾相接才是封闭图形。

  看看这组图形,都封闭了吗?那些图形我们能计算它的周长?

  [补充:一个一边余出的正方形,让学生判断.引导学生正确认识,每条线首位相接,围成的才识封闭图形,否则不能求出正确的周长]

  2. 实物的周长。

  (1)“周长”朋友就在我们身边。

  a钟面的周长在哪?指一指,摸一摸。

  b圆柱盒底面的周长在哪?……(不能说盒子的周长,强调“面”。)

  c树叶的叶面

  d红领巾的面

  (2)活动“找周长”。

  从身边找“周长”朋友,并摸一摸,同组伙伴说一说。

  (3)活动汇报。

  3. 周长测量策略探究。

  (1)回到引入图形。

  这些图形的周长在哪儿?

  所镶边的长度,就是图形的周长。

  有办法知道上面这些图形的周长吗?

  (简说什么方法,工具。)

  [通过活动前的思考,让学生初步形成选择的策略,如测量月亮和心形等可以借助绳子,而测量正方形等可直接用支持测量]

  (2)想亲自量一量周长吗?

  每个小组的信封里都有这些图形,还有绳子,待会儿除了用绳,你还可以用尺子或别的工具进行测量,咱们要比一比哪一组的测量方法多。完成后请组长表格记录结果。

  [学生在选择合适的工具时,拿着正方形等也都选用绳子,但是我准备的图形卡片较小,而线较软,在测量的时候并不好操作,而且误差也大.这也不是我的初衷,分析原因:其一,对与绳子测量,学生是第一次使用,充满了好奇,当看到绳子的时候,就忘了还有直尺这个工具;其二,学生认为用绳子只用测量一次(围一圈),而直尺却需要量四次.可喜的是,学生还是能判断出图形各边间的关系再测量,如长方形只用测量2条边,正方形测量1条边,心形测量半边,五角兴只用测一条边等]

  (3)汇报。

  方法一:直接尺量,这种量法适用于什么图形周长测量?(线段)

  方法二:间接绳量,这种量法适用于什么图形周长测量?(曲线)

  方法三:量后计算:这种量法适用于什么图形周长测量?(有重复出现的部分)

  ……

  (4)你还想测量什么物体的周长?(此环节延伸到课外)

  测量,记录。

  三、总结

  (1)这节课学习了什么?

  我的思考:作为一节随堂课,我为这一节课准备了充分的学具材料,认为这一堂课是很适合小组分工合作完成的.在匆忙的准备过程中忽略了一些细节,如准备的图形过小,线条太细太软,不便学生测量.如果能把图形都粘在胶板上,那么操作的时候难度会降低很多.在合作测量前,虽然提了诸多要求,希望能培养学生的合作能力,但是自己心情兴奋,课堂节奏快,学生缺少冷静的思考,以致在测量环节中,学生一直拿着绳子无法测量,我还要不停地徘徊在小组间指导.一节课下来,疲惫万分,课前最担忧的状态还是重复出现了.如何引导小组合作,提高合作效率?这是努力尝试着下一次的进步!

《周长》教学设计 篇5

  教学内容:义务教育课程标准实验教科书小学三年级数学上册第41页。

  教学目标:

  (1)知识与技能:让学生经过自己亲身体验,感悟周长的含义;通过小组合作与探究,用多种适当的方法来求出平面图形的周长;培养学生观察、比较及操作能力。

  (2)过程与方法:采用在教室中摆放大图形,吸引学生兴趣,让学生主动参与亲身体验中来,通过走一走、看一看、描一描、测一测等方法让学生来感知周长的含义。

  (3)情感、态度与价值观:用自己的亲身体验来说话,积极参与知识的探究,提出自己的见解。

  教学重、难点:知道周长的含义。

  教具准备:各类图形卡纸及练习纸。

  教学过程:

  (上课前已在教室中间摆放了一个图形。)

  一、创设情境,导入新课:

  t:今天小朋友们是不是感到特别奇怪,老师在咱们教室中间围了一个大大的图形,请你仔细观察这个图形,把你的发现跟大家说一说。

  (学生从外形上来说,直线曲线上来说,从对称性上来说。)

  t:观察得真仔细,小朋友们以后观察任何东西都要像今天这样仔细。好啊,那咱们观察过了,老师接下去就想请一位小朋友来走一走了。(教师示范:请一位小朋友仿照老师的走法,从一点出发,沿着这个图形的边线走一圈,请其他小朋友注意观察。)(学生走)

  t:走得棒不棒?(棒!)你们观察得更棒,老师奖励大家一个问题:刚才这位小朋友他是沿着这个图形的什么走了一圈?(边线或轮廓)在数学上,我们把这个图形的边线或者说是轮廓叫作“周长”(板书:图形的周长)

  二、合作交流,共同探究:

  (一)教学周长

  t:那你能用自己的话来说一说什么是周长吗?(学生交流。)

  教师演示:我们从任一点出发,绕着它的边线走了一周,又回到这一点,那么这一周的长度就是它的周长。

  (1)教师出示若干平面图形贴在黑板上,请学生来选择自己喜欢的一个图形来比划一下它的周长;

  (2)观察一下身边的事物,你能指一指它们的周长吗?(我们还发现了物体表面的周长,板书:物体表面的)

  t:我们发现了不光图形有它的周长,物体表面也有它的周长。

  (3)印一印,描一描:利用你桌上的物体,选取它的一个面,用印一印的方法,描出这表面的图形的周长。

  (① 印当中来发现不封闭图形;②老师也准备了两个图形,请你来描一描它们的周长:这什么这个不描呢?)(我们从一点出发,绕着图形的边线走,不能回到这一点,这个图形叫不封闭的图形,那你觉得什么样的图形才有周长呢?)所以在数学上我们可用一句更加简洁的话来概括:封闭图形一周的长度就是它的周长。

  请你判断下面哪些图形能计算周长(能,请坐好,不能,请举手。)

  (二)探求周长的方法

  t:认识了周长,下面请你想想办法来求求周长吧。

  这个任务就交给你们四人小组了。

  小组活动:老师把黑板上展示的基本平面图形放入每个小组的信封里,请各各四人小组合作探究求周长的方法

  交流:说说看,你们小组是怎样来求的?(测量、绳子围、对称性……)

  小结:我们刚才在求周长方法时,发现一个图形比较平直就可以用尺子来量,比较弯曲就可以用绳子来量,还发现对称的图形只要求一半就行了……

  三、应用迁移,巩固提高:

  (1)我想知道这片树叶的周长有几厘米,怎么办?

  (2)我用两根同样长的绳子围成一个三角形和一个四边形,谁的周长大?

  (3)t:那你能这些方法来求一下刚才印下来的物体表面图形的周长吗?

  (引到地上的教室中的大图形,以他们在上课时找到的特点可以用不同的方法来求周长了。)

  ※(4)小明的书桌面是一个长120厘米,宽50厘米的长方形。如果在它的二个角上分别裁去一个边长为5厘米的正方形,问你图形的周长发生了怎样的变化?(如图)

  四、总结反思,拓展升华:

  t:通过咱们一节课的共同学习,你收获了什么?

《周长》教学设计 篇6

  一、创设情境,导入新课

  1、复习旧知(播放课件)

  师:同学们,你们知道正方形的周长与什么有关吗?(边长)那正方形的周长等于什么?

  2、揭示课题。

  师:现在,老师给你们变个魔术。(演示课件圆)

  师:有的同学反应可真快!什么是圆的周长呢?这也是我们这节课要研究的内容。(板书课题),谁能说一说什么叫圆的周长?有的同学已经举手了。

  生:围成圆的这条线的长就叫做圆的周长,

  师:这条线是什么形状的?

  生:曲线

  师:是曲线,那你能完整地说一遍吗?

  生:围成圆的曲线的长叫圆的周长。(演示课件)

  二、引导探索,探究新知

  1、测量圆的周长的不同方法

  师:老师这里有一个圆,那你们能告诉老师,“圆的周长指的是哪一部分的长”,同桌互相比画一下。

  师:你们能量出圆的周长吗?(能)拿出你们的'圆动手量一量,看看哪一组最会动脑筋,测量得又快又好。(学生小组活动)

  师:老师看很多小组已经找到方法了,哪个小组愿意第一个到前面来把你们的方法告诉大家?(学生上台演示讲解)

  师:这种方法还真不错!还有没有不同的方法?(再请一位学生上台)真善于动脑筋!为了大家看的更清楚些,老师把这两种方法重新演示一遍,(演示课件1:球在直尺上滚动一周,直接量出球的周长。演示课件2:线绕圆一周,然后量出线的长度)请同学们看屏幕:

  师:我们同学真是太棒了,在这么短的时间内找到这么多的好方法。那我们能不能用这些方法测量出所有圆的周长呢?

  生:能!

  (播放课件)转动绑着绳子的小球形成一个圆:能用刚才的方法量出这个圆的周长吗?生:不能!

  师:那咱们能找到一种更简便、更科学的办法来解决这个问题吗?

  2、探讨圆的周长与直径的关系

  师:同学们真有信心!我们知道正方形的周长和边长有关系,周长是边长的4倍,那么圆的周长和什么有关系呢?

  师:你觉得是和直径有关系,说说理由好吗?

  师:现在请同学们观察大屏幕,(课件)你发现了什么?

  生:我发现圆的直径越长,它的周长就越长。

  师:观察得真仔细!那到底圆的周长与直径有怎样的关系呢?要解决这个问题,还请同学们继续测量,测量前先听好活动要求。(学生小组活动――测量)

  师:好,现在我们来交流一下你们的实验结果。

  (把学生的实验结果打在课件上)。

  师:大家仔细观察分析,看能发现什么?

  生:我发现了这三个圆的大小虽然不一样,但圆的周长和直径的比值都是三点一几。

  师:这个同学真是好眼力。其他小组还有什么不同的发现吗?

  生:所有圆的周长都是直径的3倍多一些。

  师:看来大家的发现都一样,那我们再来看看这几个圆是不是也有这样的规律?(课件直观展示三倍多一点)看屏幕,注意仔细观察,看能发现什么?

  生:圆不论大小,它的周长都是直径的三倍多一些.。

  3、认识圆周率:

  师:说得真好。圆不论大小,它的周长都是直径的三倍多一些.这是个固定不变的数,你们的这个发现和许多大数学家的发现是一样的,人们通常把圆的周长和直径的这个比值叫做圆周率,用字母π表示。(板书)

  师:好,现在请同学们打开书63页,找出圆周率的概念,全班齐读。

  师:圆的周长和它的直径的比值叫什么?用什么来表示?

  师:老师收集了一些有关圆周率的资料,大家想看吗?看屏幕。(课件)

  师:看了这些资料后,你了解到了什么?

  师:我国古代人民真了不起!我相信:各位同学只要努力学习,将来一定会让我们中国成为世界上最强大的国家!

  4、推导圆的周长的计算公式:

  师:刚才我们用圆的周长除以直径求出了圆周率,那么谁能说一说到底怎样求圆的周长?能得出一个什么样的公式呢?

  板书:C=πd

  师:如果知道半径怎么求周长呢?

  板书:C=2πr

  师:这2个公式都可以来计算圆的周长,要求圆的周长必须知道什么条件?

  生:圆的直径或半径。

  5、现在我们就用我们推导出来的公式来解决问题,请看大屏幕。

  三、初步运用,巩固新知

  1、已知直径、半径求圆的周长

  2、判断

  3、已知周长求直径和半径

  4、提问:小猴甩小球形成的圆的周长你会求吗?(课件)

  四、小结

  1、组织学生说说收获:

  这节课你们学到了什么?

  师:同学们从圆的周长、直径的变化中,看出了圆周率始终不变。如果我们长期坚持这样从变化中看出不变,你们就会变得越来越聪明。

《周长》教学设计 篇7

  教学内容:

  冀教版《数学》六年级上册第六单元一课时

  教学目标:

  1、知识目标:使学生直观认识圆的周长,知道圆的周长的含义;理解圆周率的意义,掌握圆周率的近似值;理解和掌握圆的周长的计算公式,并能正确地计算圆的周长;能利用圆周长计算公式解决简单的实际问题,发展应用意识。

  2、能力目标:通过对圆周长测量方法和圆周率的探索,圆的周长计算公式的推导等数学活动,培养学生的观察、比较、分析、综合和动手操作能力,发展学生的抽象概括和形象思维能力及团队合作精神。

  3、情感目标:通过介绍我国古代数学家祖冲之在圆周率的伟大成就,对学生进行爱国主义教育。

  教学重点:

  能利用公式正确计算圆的周长。

  教学难点:

  理解圆周率的意义,圆的周长计算公式的推导。

  教学准备:

  课件,直径不同的圆,细绳,软皮尺,直尺,计算器。

  教学过程:

  一、导入

  师:老师给同学们带来了两位老朋友了。(课件出示长方形和正方形)

  师:相信大家对长方形和正方形都有很多的了解了,我不让大家介绍了,老师要问同学们两个问题。”

  1、什么叫长方形和正方形的周长?

  2、长方形和正方形的周长和什么有关?

  学生思考后回答:围成长方形四条边长的总和叫长方形的周长,围成正

  方形四条边长总和叫正方形周长。长方形的周长和它的长和宽有关,正方形周长和边长有关。

  (课件出示圆形)

  师:“你对圆形有哪些了解?”

  学生能说出圆的各部分名称,直径是半径的2倍,圆有无数条对称轴,对称轴就是圆的直径。

  师:那什么是圆的周长呢?

  生:围成圆一圈弧线的长度总和叫圆的周长。

  师:那你还想知道哪些圆的知识呢?

  生:我想知道圆的周长和面积。

  师:这节课我能满足你们的一个愿望,我们一起来研究的是圆的周长。

  (板书课题)

  二、探索新知

  1、周长的测量(自主发现、动手操作)

  师:利用准备的学具,测量一枚一元硬币的周长,看哪位同学的方法最准确?

  学生说出三种方法:绳测法、滚动法、软皮尺测,学生边说边进行演示。

  2、圆周与直径的探究

  师:在刚才的操作中,我们用绳测、滚动的方法都能测量出圆的周长,但是绳测、滚动的方法测量圆的周长太麻烦,有时也做不到。这就需要我们找到一种既简单又能准确计算圆的'周长的方法。大家想一想圆的周

  长与什么有关系。生“直径。”

  师:你们是怎么看出圆的周长和直径有关系?圆的周长跟直径是否存在关系呢?我们一起来研究一下。

  3、小组合作探究圆周长与直径、半径的关系。

  师:同学们,课前我们分好了四人小组,现在要小组合作了,老师希望每个小组成员都要先听清楚要求再动手去做。

  小组合作要求:

  1、利用手中的学具测量物品中圆的周长和它的直径。

  2、把测量的数据填入记录单中,用计算器算出圆的周长是它直径的几倍。(得数保留两位小数)

  3、观察得到的数据,你发现了什么?

  师:哪个小组先汇报?先说说你们采用的方法,再说结果。生:绕线法。生:滚动法。

  学生汇报几组数据,教师板书。

  师:通过刚才的动手操作,你们发现了什么?哪个组说说?生:圆的周长÷直径=3倍多一些。

  师:打开数学书,我们自学83页知识来了解。

  学生自学了解了圆的周长总是直径的三倍多一些,这个倍数是一个固定不变的数,叫做圆周率,用字母π表示。圆周率是一个无限不循环小数,我们在计算的时候只取它的近似值。

  (板书:圆周率π)课件出示补充祖冲之小知识窗

  早在1500多前,我国古代的数学家祖冲之就精密地计算出圆周率的值在3.―3.之间。这是当时计算出的最精确的圆周率的值,比国外科学家的发现要早1000多年。师:看完这个小知识,你有什么想法?生:祖冲之真伟大,我们的祖先非常的有智慧。师:我们的祖先很聪明,我们更应该发扬光大。师:圆的周长怎么求呀?生:圆的周长=直径×师:板书C=πd谁来说说你是怎么理解的?生:C表示圆的周长,d表示直径,π表示圆周率,

  C=πd师:如果知道半径,应该怎样写?生:C=2πr师:你是怎么想的?

  生:在同一个圆里,直径是半径的两倍。

  三、实践与应用

  1、一面圆镜的镜面直径是40厘米,在它的边缘镶嵌着一根金属条。这根金属条的长至少是多少厘米?

  2、求圆的周长

  (1)r=6

  (2) r=10

  (3) d=5

  3、校园里有一颗大柳树,我想知道柳树的直径,你们有什么办法吗?同学们课下求一求。

  四、教师小结

《周长》教学设计 篇8

  教材分析:

  《圆的周长》是六年级数学上册第一单元的内容。这部分内容是在三年级上册学习了周长的一般概念以及长方形和正方形周长的计算的基础上进一步学习圆的周长的,同时它又是学生初步研究曲线图形的开始,为以后学习圆柱、圆锥等知识打好基础,因而它起着承前启后的作用,是小学几何初步知识教学中的一项重要内容。

  学情分析:

  本节课是在学生掌握了关于长方形,正方形周长的计算方法,也认识圆的各部分名称,知道半径,直径的关系并且会画圆,能测量出圆的直径的基础上进行教学的,前面的知识为这节课的学习活动做好了铺垫。因为六年级学生正在经历从具体形象思维向抽象逻辑思维过渡的时期,所以在教学中,应从学生已有的知识和生活经验出发,通过自主探究、猜测验证、推导圆的周长计算公式,从而使学生理解公式中的固定值“π”是如何得来的。

  教学目标:

  1、知识与技能目标:使学生认识圆的周长,掌握圆周率的意义和近似值,初步理解和掌握圆周长的计算公式,能正确计算圆的周长。

  2、过程与方法目标:通过动手操作、实践探究的活动,培养和发展学生的空间观念,提高学生的抽象概括能力,渗透“化曲为直”的数学思想方法。

  3、情感、态度与价值观目标:通过渗透数学文化,培养学生的爱国情怀,激发学生的民族自豪感。

  教学重点:推导圆的周长的计算公式。

  教学难点:理解圆周率的意义。

  教学过程:

  一、创设情境 导入新课

  在动物王国里,两只小蚂蚁正在进行赛跑,甲乙连只蚂蚁分别沿着正方形和圆形跑一圈,谁跑的路程长?为什么?

  圆的知识系列微课(四)《圆的周长》教学设计

  甲蚂蚁跑的路程:4×2=8(厘米)

  要求乙蚂蚁跑的路程,就要求出圆的周长。

  从图上可以看出:圆的周长就是圆一周曲线的'长度。这节课我们就来研究圆的周长。

  二、实践操作 探究新知

  1、测量圆的周长

  怎样测量圆的周长呢?

  方法一 绳测法:用绳子绕圆一周,测出绳子的长度。

  方法二 滚测法:把圆在直尺上滚动一周,做上记号,量出圆的周长。

  利用课件展示两种测量方法。

  小结;无论是滚动法还是绳绕法,大家都是把我们没学过的圆的周长转化为一条线段,这是一种很重要的数学思想方法――化曲为直。

  2、探究周长与直径的关系:

  (1)猜想:圆的周长与什么有关呢?

  (2)测量圆的周长与直径,并填表

  周长

  直径

  周长与直径的比值(保留两位小数)

  1号圆片

  2号圆片

  3号圆片

  (3)观察表格:你发现了什么?

  圆的周长总是直径的三倍多一些。

  (4)介绍圆周率:圆的周长与直径的比值是一个固定不变的数,通常我们称之为“圆周率”,用希腊字母“π”来表示,“π”是一个无限不循环小数,为了计算方便,一般我们只取它的近似数π≈3.14。(板书:圆周率,π≈3.14)

  (5)渗透数学文化

  师:孩子们,不仅我们发现了圆周率,古人们同样用自己的智慧得出了圆周率的值是多少。【介绍《周髀算经》中与圆的周长相关的内容以及我国古代伟大的数学家和天文学家祖冲之的故事。】

  3、推倒圆的周长计算公式:

  刚才我们已经知道了圆的周长始终是直径的π倍,而且知道了圆周率是个常量,如果已知直径,怎样求圆的周长呢?

  生:圆的周长=直径×圆周率。(板书:圆的周长=直径×圆周率)

  用字母表示圆的周长为; C=π或 C=2πr

  三、实际应用 解决问题

  乙蚂蚁爬过的路程为:3.14 ×2=6.28(cm)

  8cm6.28

  甲蚂蚁爬过的路程长。

  四、回顾全课 归纳总结

  这节课你有什么收获?

  五、板书设计:

  圆的周长

  化曲为直

  圆的周长=直径×圆周率 π≈3.14

  C=πd或C=2πr

《周长》教学设计 篇9

  一、教学目标:

  1. 让学生知道什么是圆的周长,《圆的周长》教学设计及反思。

  2. 理解并掌握圆周率的意义和近似值。

  3. 经历推导圆周长计算公式的过程,初步理解和掌握圆的周长计算公式,并能进行正确计算。

  4. 培养学生的观察、分析、综合及动手操作能力;在探究中体验成功,增强信心。

  5. 结合圆周率的学习,对学生进行爱国主义教育

  二、教学重点:推导圆周长的计算公式,准确计算圆的周长。

  三、教学难点:理解圆周率的意义。

  四、教学准备:老师:课件、直尺、一元硬币、水桶、易拉罐、纸剪的圆、绳子等

  学生:2个大小不同的硬纸圆片、直尺、彩带、学具。

  五、教学过程:

  (一)、认识圆的周长

  1.情境导入。

  师:同学们,看过《米老鼠和唐老鸭》吗?

  师:今天黄老师把这两位“巨星”请到了我们的课堂,咱们鼓掌欢迎它们的到来好不好?(生齐鼓掌!)

  师:米老鼠和唐老鸭在跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。到底谁跑得路程长呢?

  2.迁移类推

  师:(让学生自由发言后说明)究竟它们谁跑得路程长?如果给你有关数据你能裁定谁跑得路程长吗?

  (1)师:谁来说说要求唐老鸭所跑的路程,就是求什么?(就是求正方形的周长。)

  (2)师:谁再来说说什么叫正方形的周长?你会求正方形的周长吗?(围成正方形四条边长的总和叫做正方形的周长。正方形的周长等于边长×4。)

  师:知道边长×4的含义吗?(正方形的周长与它的边长有关系,周长是边长的4倍。)指名说。

  (3)师:要求米老鼠所跑的路程,实际上就是求圆的什么呢?(圆的周长)

  师:很好!那什么叫圆的周长,又怎样计算圆的周长呢?这节课我们就来研究这个问题,愿意吗?(板书课题:圆的周长)

  每个同学的桌上都有一元硬币、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。

  师:谁能概括一下,什么叫做圆的周长呢?小组讨论后指名答。

  (完成板书:围成圆的曲线的长叫做圆的周长)

  师:(出示一教具圆片)谁来说说这个圆的周长就是指哪一部分的长?指名学生边演示边说。谁再来说说。

  3.实际感知

  师:请同学们拿起圆形纸片,小组之间互相指一指、说一说圆片的周长。

  (二).测量圆的周长

  1.师:正方形、长方形的周长很容易尺量计算,大家猜猜圆的周长用尺量计算方便吗?(不方便)

  师:(出示教具圆片)那有什么办法呢?在小组内讨论一下。量出一号圆的周长,并把数据填写在实验报告单相应的表格中。听明白了吗,开始。(小组活动)

  2.小组汇报:(预设)

  (1)师:哪个小组愿意来汇报?

  【方法一:用线绕

  师:谁来与老师配合绕给同学们看看?

  (师生合作用绕线的方法去测量圆周长)

  师:这样绕了以后,怎么就知道了圆的周长呢?(生说明)

  师:(课件补充说明)用线绕圆一周以后,捏紧这两个正好连接的端点,把线拉直,这两点之间线的长就是什么?(圆的周长)(2)师:除此以外,还有别的方法吗?

  【方法二:把圆放在直尺上滚动一周,教学反思《《圆的周长》教学设计及反思》。

  师:(课件演示)请看大屏幕,在圆上取一点作个记号,并对准直尺的零刻度线,然后把圆沿着直尺滚动,直到这一点又对准了直尺的另一刻度线,这时候圆就正好滚动一周。圆滚动一周的长就是什么?(圆的周长)

  (3)师:现在老师给你一个圆,你会测量它的周长呢?(会。)

  师:真的吗?谁敢来试试。

  指名一生上台测量黑板上的圆。可能用线绕。

  师:有什么感觉?(不方便!)

  师:那你可以把它搬下来滚动呀!(生齐笑)

  这就说明用绕或滚这两种方法测量圆的周长,有时还很不方便。这就需要我们探讨出一种求圆周长的普遍方法。

  (三)、引导学生发现圆的周长和直径之间的关系

  1.猜测

  师:正方形的周长与它的边长有关,周长是边长的4倍,那么圆的周长跟它的什么有关呢?

  2.验证

  师:谁知道圆的大小是由什么来决定的吗?(半径或直径)

  师:圆的周长是不是和直径有关呢,请同学们来观察几个圆。(媒体演示)

  师:哪个圆的直径最长?哪个圆的周长最长?哪个圆的直径最短?哪个圆的周长最短?

  师:你感觉到了吗?

  (圆的直径越长,周长越长;圆的直径越短,周长越短。)

  师:这就说明圆的周长肯定与圆的.什么有关系?(圆的周长与直径有关系。)师:圆的周长与直径到底有什么关系呢?

  师:刚才,大家都对圆的周长与直径成什么关系进行猜测,下面,我们就通过动手实验来检验大家的猜测是否正确。

  ①测量计算。

  让学生拿出课前准备的4个大小不同的圆,分别测量它们的直径和周长,并按要求填写下表。

  ②汇报、展示。

  让学生汇报自己的测量结果和计算结果,教师把不同的圆的有关数据通过表格的形式呈现出来。

  ③观察、发现。

  让学生观察、比较表中的数据,想一想:通过观察和比较,你发现了什么?通过全班交流,引导学生初步发现:圆的周长总是直径的3倍多一些。(板书:圆的周长总是它的直径的3倍多一些。)

  (3)介绍圆周率和祖冲之在圆周率研究方面作出的贡献。

  ①揭示圆周率的概念:表示这个3倍多一些的数是一个固定不变的数,我们称它为圆周率。能用式子来表示吗?请试一试。(板书:圆的周长÷直径=圆周率)

  ②介绍圆周率的表示字母π及其读写法。

  ③介绍祖冲之及圆周率的有关知识,激发民族自豪感,同时指出圆周率的数值及小学阶段计算时所取的近似值π≈3.14。

  (四)总结圆周长的计算方法。

  1、根据圆周长与直径的关系,

  你能推导出圆的周长计算公式吗?指名回答,

  引导学生归纳:圆的周长=直径×圆周率(板书:圆的周长=直径×圆周率)能用字母表示吗?(板书:C=πd)师:如果已知圆的半径r,可以怎样计算圆的周长呢?板书:C=2πr)2、回应新课引入的情境,即时练习。

  师:现在,你能求出谁的路程长吗?为什么?

  (五)、应用圆周长计算公式,解决简单的实际问题.

  1. 教学例题:一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)

  2.练习题

  板书设计

  圆的周长测量:滚动法 绳测法

  规律:圆的周长总是它的直径的3倍多一些。

  圆的周长÷直径=圆周率

  公式:圆的周长=直径×圆周率C=πdC=2πr

  教学反思:

  圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值“∏”是如何来的,都是值得学生研究的问题。因此,教学中,我着力与培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算公式。因为是自己操作的所得,再加上我在课堂中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对“∏”的含义就理解得特别透彻,也学得有兴趣。在测量过程中,学生量的数据可能误差有点大,应尽可能把误差减少,课堂应培养学生的动手能力,善于思考和发现。

《周长》教学设计 篇10

  教学内容:苏教版小学数学第十册第98―99页。

  教学目标:1、理解圆周率的意义,掌握圆的周长的计算公式。

  2、通过测量、计算、猜测圆的周长和直径的关系,理解和掌握圆的周长的计算公式,并能正确地计算圆的周长。

  3、体验数学与日常生活的密切联系,了解圆周率的发展史,激发民族自豪感和探索精神。

  教学重点:理解和掌握求圆的周长的计算公式,能计算圆的周长。

  教学难点:动手操作,探索圆的周长与直径的关系。

  教学具准备:教师准备多媒体课件、学生实验报告表。学生准备直尺、直角三角尺两把、一角、五角、一元硬币名一枚、绳子。

  教学过程:

  一、联系生活,激活内需

  同学们,为了倡导低碳生活、共建绿色家园,重庆一支自行车队伍头戴钢盔,身穿印有“环保、低碳”字样的文化衫,人手一辆自行车,从奥体中心出发,驶向主城各个方向,庞大的阵容吸引了不少市民关注。(课件出示图片)但是,他们选择的自行车却是不一样的,请同学们看两张图片。(课件出示自行车的两张图片及议一议的内容)

  议一议:(1)车轮转动一周,谁的车走得远呢?为什么?什么是车轮的周长?

  (2)车轮的周长和什么有关系?圆的周长与什么有关系?圆的周长与直径有怎样的关系呢?

  揭示课题:圆的周长

  【评析:从现代生活理念出发,也是从学生已有的知识经验出发,感知车轮转动一周的远近与车轮的周长有关,车轮周长的大小就是圆的周长的大小,圆的周长与直径的长短有关。一方面让学生受到了环保教育,另一方面也让学生自我发现研究圆的周长要从研究周长与直径的关系入手,也产生了进一步探究的必要性。】

  二、实验操作,探究新知

  1、在情境中内化概念

  同学们已经知道圆的周长指的那部分,那你们拿出自己准备的硬币,用手摸一摸这个圆的周长,并且指给你的同桌看一看。那你能不能用自己的话说一说什么是圆的周长?

  师生共同小结:围成圆的曲线的长是圆的周长。

  2、测量圆的周长

  (1)既然圆的周长是曲线那能不能用直尺直接测量呢?怎么测量呢?(让学生独立思考10秒左右)

  (2)四人一小组讨论、交流测量方法。并把结果记录下来。(滚动法、绕绳法)

  (3)小组汇报:哪个组愿意第一个到前面来把你们的方法介绍给大家?(结合学生的方法配以课件演示)

  课件演示的时候让学生观察两种测量方法的相同点是什么?(都是把圆周长这条曲线转化成了线段,然后通过测量这条线段的长度就得到了圆的周长)

  (板书:化曲为直)这种转化的方法在数学学习中很常见,同学们利用的很好。

  3、探索规律

  圆的周长与直径到底有怎样的关系呢?利用你手中的硬币及工具来测量一下圆的周长与直径。下面请同学们选用自己喜欢的方式以小组为单位进行测量,记录测量数据,并通过计算寻找周长与直径的关系,看看你们组发现了什么。把结论填在表的下面。(课件出示实验报告表,并让每组拿出课前发的表格。)

  物品名称

  周长

  直径

  周长与直径的关系(计算)

  一角硬币

  五角硬币

  一元硬币

  我们发现的规律是:

  小组合作完成,全班交流实验结论。预设:圆的周长是直径的3倍多一些。

  4、老师操作,即课件演示测量圆的直径和周长的过程。

  师:老师也测量了圆的周长与直径,你们想看一看吗?演示课件。

  总结:圆的周长总是直径的3倍多一些。

  5、认识圆周率

  (1)实验证明:圆的周长确实是直径的三倍多一点,我们把它叫做圆周率,很早以前我国的数学家就发现了这个规律,下面请同学们听有关圆周率的故事。请同学们在听的过程中把你认为重要的记在脑子里。

  (2)听了这个故事,你有哪些感受?师:是啊,中国人真了不起!从古到今,一直如此,我希望同学们也能成为一个了不起的人。

  (3)师说明:刚才同学们算到的结果都不是3.14,那是因为做实验时的误差所致。“圆的周长总是直径的三倍多一些”写成关系式,(板书:圆的周长÷直径=圆周率)圆周率用字母π表示。

  “圆的周长总是直径的三倍多一些”还可以说成“圆的周长总是直径的π倍。

  根据这个结论,你能说出计算圆周长的公式吗?如果用字母C表示圆的'周长,d表示直径,它的字母公式你会表示吗?(板书:圆的周长=直径×圆周率)能用字母表示吗?(板书:C=πd)还可以知道圆的什么条件求周长?(半径)知道半径怎样求呢?字母公式怎样表示?(C=2πr)

  【评析:以小组学习的形式,放手让学生去探求圆的周长,目的是体现让学生进行自主探索的教学思想,同时也培养学生的合作意识与能力。这里提供三种不同的圆让学生求周长,向学生渗透“化曲为直”的数学思想及方法。通过介绍圆周率,在头脑中完善对圆的周长计算方法的认知,促进学生的自我建构,激发一定的民族自豪感和探索精神。】

  三、巩固应用,内化知识

  1、独立完成。

  (1)“试一试”。

  计算例4中三个自行车车轮的周长大约各是多少厘米。

  (2)“练一练”。

  有一种汽车车轮的半径是0.3米。它在路面上前进一周,前进了多少米?

  3、小组合作完成。

  (1)你知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程吗?要解决这个问题你想得到什么样的数据?

  (2)(出示图片)圆形花坛的直径是20米,小自行车车轮的直径是50厘米,绕花坛一周车轮大约滚动多少周?

  【评析:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程,体会到学以致用。实例计算可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为课后实践题打下很好的伏笔。】

  四、回顾反思,评价小结

  通过这节课的学习,评价一下自己学得怎样?你有什么收获?这些知识是怎样学到的?

  师:同学们,生活中的数学问题还有很多,希望你们善于发现,善于探索,善于总结,相信你们一定会拥有更多的智慧,收回更多的快乐!

  五、课后拓展,走进生活

  小组合作完成,应用这节课学到的知识,想办法测量一下,从学校大门口到影剧院门口的距离大约是多少米。

  【评析:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力。】

  板书设计:

  圆的周长

  圆的周长是直径的3倍多一些

  圆的周长=直径×圆周率

  C=πd

  C=2πr

《周长》教学设计 篇11

  教材版本:《义务教育课程标准实验教科书 数学》

  教学内容:六年级上册第四单元第57页

  教材分析:圆的周长是学生在学习直线图形的周长、面积基础上第一次学习曲线图形的周长。教材关于“圆的周长”这一内容,安排在六年级上册第四单元。教材创设了一个“天坛”的简单情景,帮助学生认识圆的周长,并用“绕线”“滚动”等常用方法测量圆的周长,然后安排了探究活动:“圆的周长与什么有关?有什么关系?”通过研究发现圆的周长与直径的关系,从而推导出圆的周长计算公式。

  学情分析:学生是学习的主体,是知识建构的主动者。高年级学生能运用已有的知识经验通过顺迁移探索发现新的知识,并运用新知解决实际问题。他们在小组合作的学习环境下,利用自主探索的学习方式,学习的积极性较高,他们善于探索,敢于质疑,敢于创新,敢于发表自己的主张和看法。学生在第一学段已经直观的认识了圆,建立了周长的概念,并会求直线段围成的图形的周长,对圆的周长有丰富的感性经验。在此基础上,通过本节课的学习让学生经历圆周率的产生与形成过程,探究发现圆的周长计算公式,并能利用公式解答实际问题。

  教学目标:

  1、使学生经历圆周率的探究过程,推导出圆周长的计算公式,并能正确地计算圆的周长。

  2、培养学生的观察、比较、分析、综合及动手操作能力。

  3、初步学会透过现象看本质的辨证思维方法。

  4、结合圆周率的学习,对学生进行爱国主义教育。

  教学要点分析:

  教学重点:学生已经建立了周长的概念,对圆的周长也积累了丰富的感性经验。因此,关于什么是圆的周长,学生比较容易理解。圆作为一种曲线围成的图形与学生头脑中熟悉的直线段围成的图形差别比较大,因此探究圆的周长计算公式是本节课的教学重点。

  教学难点:在探究圆的周长计算公式时,最有价值的、最具有思维含量的地方是让学生经历圆周率的产生过程,因此本节课充分放手让学生经历圆周率的探究过程,是本节课的教学难点。

  教学过程:

  一、开门见山,揭示课题

  师:大家请看,这是什么图形?(课件出示课本57页天坛情景图)

  生:圆形。

  师:我们已经认识了圆,今天这节课我们一起来学习圆的周长。(板书课题:圆的周长)

  (评析:学生已储备了较丰富的圆形物体的表象,对周长的概念也较容易理解;再者,本节课学生探究的时间较长,四十分钟的课堂学生要经历前人历尽艰辛推导圆周长计算公式的历程;为保证把过程性目标落实到位,在课的起始阶段,开门见山,迅速集中学生的注意力,把他们的思维带进特定的学习情境中。)

  二、探索交流,解决问题

  1、圆的周长含义

  师:请大家想一想,什么是圆的周长?谁能指着圆说一说。

  生:圆一周的长就是圆的周长。

  师:(指圆)我们把围成圆的曲线的长叫做圆的周长。

  2、自主探究求圆的周长的方法

  师:怎样求圆的周长呢?下面我们借助学具圆片来研究。

  大家请看,这是一个圆形纸片,你有办法知道它的周长吗?请小组同学商量好方法后,合作求出每个圆片的周长,并把结果记录在表格中。

  (小组活动,教师巡视。)

  师:哪个小组先来介绍你们的方法?

  生1:我们是用绳子绕圆片一周,然后量出绳子的长度,就得到了圆片的周长。

  师:还有那个小组也用到了这个方法?

  (全体学生都举手)

  师:噢,都用到了,看来是个不错的方法。还有不同的方法吗?

  生2:我们先在圆片上作个记号,然后把圆片沿着直尺滚动一周,就量出了圆片的周长。

  师:这个办法怎么样?

  生:很好。

  师:同学们都是用测量的方法得到了圆片的周长,归纳起来大家用了两种测量方法,一起来看:

  多媒体演示,师生共同描述:可以先在圆片上作个记号,然后把圆片沿直尺滚动一周,就得到了这个圆片的周长。

  还可以用绳子绕圆片一周,作好记号,然后把绳子拉直,用直尺量出绳子的长度,也就是圆片的周长。

  师:这两种方法都是把圆的周长这条曲线巧妙的转化成了什么?

  生:直线。

  师:是直直的线段。在数学学习中,我们经常会用到转化的方法。(板书:转化)

  (评析:根据学生的学习经验和已有的知识,引导学生自主探究方法,合作测量圆的周长,既强化了学生对圆的周长意义的理解,又为后面探索圆周率打下基础。在测量交流的过程中,体会了“化曲为直”的数学思想,经历了用数学思想方法解决数学问题的过程,学生思维能力、动手操作能力和合作意识得到培养。)

  师:同学们已经会用测量的方法求圆片的周长,真棒!大家请看,(课件出示)这是北京天坛公园的回音壁(图),它有一道圆形围墙;这是被称为“天津之眼”的摩天轮(图),它的框架也是圆形的,你能用刚才的方法测量出这些圆的周长吗?

  生:不能。

  师:为什么呢?

  生1:我们没有那么长的绳子,更不可能用滚动的方法。

  生2:就算我们有足够长的绳子,可是量起来太困难。

  师:看来用测量的方法也能解决,可是太麻烦,那有没有简便的方法呢?

  生:计算。

  (评析:创设情境,感悟“围”“滚”测量圆的周长的局限性,切实体会计算圆的周长的必要性,使下面的学习有了驱动力。我们说,要以学生为主体,其本质就是学生学习内驱力的唤醒和激发。)

  3.探究圆的周长计算公式

  (1)探究发现圆周率的取值范围

  师:怎样计算圆的周长呢?

  师:大家回想一下,以前我们学过长方形、正方形的周长计算,计算长方形的周长需要知道它的长和宽,计算正方形的周长需要知道它的边长,那么大家想一想,计算圆的周长需要知道什么呢?也就是说圆的周长和谁有关呢?

  生:直径和半径。

  师:能说说你的理由吗?

  生:因为圆的直径和半径决定圆的大小。

  师:我们知道圆的直径和半径越长圆越大,那圆的周长就越长,圆的直径和半径越短圆越小,那圆的周长就越短。看来圆的周长和直径或半径的关系确实很密切,那大家来观察,你认为圆的周长与直径会有怎样的关系呢?

  (大多数学生茫然,教师加以引导)

  师:我们知道长方形的周长是它长、宽之和的2倍,正方形的周长是边长的4倍,那么圆的周长和直径是怎样的关系呢?

  生:倍数关系。

  师:请大家观察,你认为圆的周长是直径的几倍?

  生:圆的周长是直径的2倍多。

  师:能说说你是怎样想的?

  师指图继续让生说。

  生:直径把圆平均分成了2份,半个圆周的长比直径长,圆的周长是直径的2倍多。

  师:通过刚才的交流,我们达成共识,圆的周长一定比直径的2倍多,(板书:2倍多)那会比几倍少呢?或者接近几倍呢?

  (评析:借助已有的知识获取新知,是最高的教学技巧所在。当老师提出“怎样计算圆的周长?”这一问题时,学生感到茫然。老师引导学生回忆长、正方形的周长计算,让学生类比猜想并形成了假设:计算圆的周长需要知道什么?周长和直径有什么关系?沟通了知识间的联系,促成了迁移。)

  生猜并说理由。

  师:看来同学们找不到合理的依据,为了研究方便,老师给每小组提供一个圆形图片,小组同学一起来想一想、画一画、比一比,共同研究这个问题,好吗?

  (老师为每组发一张画有一条直径的圆的图片,各小组进行充分的操作研究,老师参与小组活动。)

  师:我发现每个小组都有自己的想法了,哪个小组先来说一说?

  生1:(拿着自己研究的成果介绍)我们小组又画了一条直径,把圆等分成了四份,发现圆的周长应该是直径的四倍左右。

  生2:我们小组在圆的外面画一个正方形,我们发现正方形的边长和圆的直径相等,正方形的周长是直径的4倍,圆的周长比正方形的周长短,所以圆的周长比直径的4倍少。

  师:同学们真聪明,知道用以前学过的图形帮助研究新问题。圆的周长比直径的2倍多,4倍少,那你想不想知道更接近几倍呢?

  生:想。

  师:大家看,刚才这小组把圆等分成四份,发现圆的周长是直径的4倍左右,我们借助这种思路,再继续等分下去看能发现什么?大家看(多媒体演示:把圆等分六份)现在把圆等分成了几份?

  生:六份

  师:圆周角平均分成了6份,那这一个角是多少度呢?

  生:60度。

  师:这一个三角形是什么三角形?(课件闪烁一个三角形)

  生:等边三角形。

  师:那么这一条边就等于圆的半径,这一段弧和这一条边比,谁长?(课件闪烁一段弧和对应的一条边)

  生:弧长。

  师:也就说这一段弧比圆半径长,那圆的周长比圆半径的几倍多?

  ,《圆的周长》教学实录与评析

  生:6倍多。

  师:比圆直径的几倍多?

  生:3倍多。

  师:圆的周长比直径的3倍多一些,到底是几倍呢?有什么办法知道?

  生:我们可以量出圆的周长和直径,用周长除以直径,算一算。

  (评析:使学生经历知识的产生与形成的过程非常重要,以上外切正方形、分割圆等方法正是阿基米德、刘徽等数学家研究圆周率时所使用的,学生萌生并运用这些方法进行研究,正是我们所追求的“大数学观”。在提出问题―形成假设―猜想推理―形成结论的过程中,学生对知识的理解更加透彻,情感、态度、价值观的培养更加有效。借助课件演示,使学生感受到了极限思想。)

  (2)计算圆周率的近似值

  师:刚才每个小组已经测量出几个圆片的周长,下面请各小组再拿出表格,找到每个圆的直径,填在第三栏,并用计算器算出周长除以直径的商,把结果记录在表格第四栏中,除不尽的得数保留两位小数。

  (小组活动,教师巡视。)

  (各小组完成后,老师把各组的表格依次放在展台上。)

  师:我们测量的圆的直径都不一样,周长也不一样,请同学们来观察这些周长除以直径的商,你又有什么发现?

  生:都比3大。

  生:圆的周长除以直径的商都是3点几。

  生:都在3.2左右。(板书:3.2倍左右)

  师:也就是说圆的周长总是直径的3倍多一些,这也证明我们刚才推理的结果是正确的,其实,在古今中外,有许多数学家研究过这个问题,他们经过大量的实验,已经证明圆的周长除以直径的商是一个固定的无限不循环小数,它是3.1415926……,我们把它叫做圆周率,(板书:圆周率)用一个希腊字母π来表示。(板书:π)。

  师:一起读。(板书pài)

  师:我们看,刚才同学们计算的圆的周长除以直径的商为什么都不是固定的数呢?

  生:测量不准确,有误差。

  师:很会分析问题。我们计算的商都不一样,是因为测量有误差造成的。只要测量方法正确,测量过程仔细,是可以减小误差的。

  (3)介绍圆周率的历史

  师:有关圆周率的历史,你想了解一下吗?

  (多媒体演示,教师介绍。)

  师:在我国,有关圆周率的最早记载是20xx多年前的周髀算经,当时的解决方案是测量,人们发现圆的周长总是直径的.3倍多。和我们刚才测量计算的结果是一样的。

  魏晋时期伟大的数学家刘徽首先采用“割圆术”得出了较精确的圆周率的值。我们刚才把圆周等分成了2份,发现圆的周长是直径的2倍多,等分成4份,发现周长是直径的4倍左右,等分成6份,发现周长比直径的3倍多一些,刘徽一直把圆等分成192份,得到了圆周率的近似值3.14。

  继刘徽之后,我国南北朝时期有一位伟大的数学家和天文学家,他继续研究圆周率,并做出了杰出的贡献,你知道他是谁吗?

  生:祖冲之。

  师:对,祖冲之。他计算出π的值在3.1415926和3.1415927之间,是世界上第一个把圆周率的值的计算精确到小数点后七位小数的人。比国外数学家得到这一精确数值的时间至少要早1000年。你有什么感想?

  生:祖冲之很伟大。

  师:是啊,我们确实该为我们的祖先能有这样的伟大成就感到骄傲和自豪。

  师:虽然如此,人们对圆周率的研究远没有结束。随着数学技术的发展,现在人们已经用计算机将圆周率计算到小数点后12411亿位。

  师:有关圆周率的历史资料还有很多,有兴趣的同学课下继续搜集、查阅。

  (评析:让学生了解自古以来人类对圆周率的研究历程,领略与计算圆周率有关的方法,从而了解数学的悠久历史和人类对数学知识的不断探索过程,感受数学的魅力,激发研究数学的兴趣。同时,结合刘徽、祖冲之研究圆周率取得的伟大成就,激发学生的民族自豪感。)

  (4)推导圆周长的计算公式

  师:现在我们知道了圆的周长总是直径的π倍。π是一个固定的数,知道了直径,怎样计算圆的周长。

  生:圆的周长等于圆周率乘直径。

  师:如果用字母C表示,那么C=?

  (板书:C=πd)

  师:知道了圆的直径,你会计算圆的周长,知道了圆的半径,怎样计算圆的周长?

  (板书:C=2πr)

  师:要计算圆的周长,只要知道什么就可以了?

  生:直径或半径。

  师:由于π是一个无限不循环小数,在计算的时候,一般取两位小数。(板书:3.14)

  (评析:通过前面的探究,学生明确了圆的周长与直径的关系,进而引导学生推导圆的周长计算公式,水到渠成,深化了学生的思维。)

  三、实践应用,内化提高

  师:现在老师告诉你天坛回音壁的圆形围墙的直径是65米,这个摩天轮的圆形框架的半径是55米,现在你能求出它们的周长吗?

  (学生独立尝试,教师巡视。)

  师:谁来介绍你的计算方法?

  生读题,集体订正。

  (评析:利用探究得出的公式解决前面提出的实际问题,使学生体会到计算公式的简洁、实用,培养了学生解决问题的能力。)

  四、回顾整理,反思提升

  师:今天这节课你有什么收获?

  生1:我学会了计算圆的周长。

  生2:我了解了圆周率的历史。

  师:这些都是大家知识上的收获,我们在获取这些知识时,通过观察圆的图形,做辅助线、等分圆等方法,首先确定了圆周率的取值范围,又通过测量计算找到了圆周率的近似值,我们还自己推导出了圆周长的计算公式,同学们真是太棒了。

  (评析:数学学习,不仅是数学知识的学习,更重要的是数学思想与方法的学习。课的最后,不仅引导学生回顾了本节课学到的知识,还与学生一起回顾了解决问题的策略、方法,并对学生所做出的成绩给予情感上的激励。)

  创新特色:

  1、把基本活动经验和基本数学思想方法纳入本节课的重要教学目标。

  数学教学不仅要重视“双基”,即基础知识和基本技能,而且要重视获得适应社会生活和进一步发展所必须的数学基本思想和基本活动经验。圆的周长这节课的设计充分体现了这一理念。本节课设计了三次探究活动。第一次探究,在“怎样求圆形纸片的周长?”这一问题的引领下,让学生利用手中的学具自主探究方法,学生根据已有的知识经验,联想到“用线围”和“在直尺上滚”的测量方法。然后教师用问题“这两种方法都是把圆的周长这条曲线巧妙的转化成了什么?”启发学生体会“化曲为直”的数学思想。第二次探究,学生已观察得出圆的周长是它直径的2倍多之后,启动问题“那会比几倍少或接近几倍呢?”学生独立思考却找不到合理的依据,感到困惑的时候,老师为每小组提供一个圆的图片,让各小组发挥集体的智慧,共同研究。第三次探究,学生已经通过观察、讨论等方法发现了圆的周长比直径的3倍多,4倍少,老师再问“那究竟是几倍呢?用什么方法才能知道?”启发学生想到计算的方法,然后请各小组在前面测量的基础上,算出圆的周长除以直径的商并观察有什么发现,得到圆周率的近似值,同时也验证了前面的推理。在三次探究活动中,学生利用已有的知识经验,基于对知识探求的欲望,主动进行操作、猜想、验证、思考与交流,经历了知识的产生与形成的过程,积累了解决数学问题的经验,获得了解决数学问题的方法。

  2、促进知识的迁移

  “为迁移而教”。迁移的前提是知识间存在着联系,我们要善于研究知识间的联系,促进知识的迁移,使原有的知识同化新知识。圆的周长与长、正方形的周长计算存在着联系,计算都需要一定的条件,周长与条件之间都存在倍数关系。本节课在设计时,采取了并列结合的学习方式,步步深入,使学生借助已有的知识经验,探求新的知识。

  3、把数学教学看作一个整体。

  本节课增加了学生猜想计算圆的周长需要什么条件,及探究圆的周长与直径倍数的取值范围,探究占用了较多的时间。四十分钟的课堂,要做到面面俱到是很困难的,让学生经历探究圆周率的过程,推导出圆的周长计算公式,这对学生来说是个了不起的收获。本节课把“使学生经历圆周率的探究过程,推导出圆周长的计算公式,”作为主要目标,因此压缩了练习的时间,把练习放在下一节,让练习课成为新授课的延伸。

  3、充实、完善了教学目标。

  把数学看作大数学,本节课的教学,学生不是在别人提示下通过测量计算得到的圆周率,而是引导学生借助已有的知识经验,调动学生的智慧,使学生经历前人研究圆周率的过程、所运用的方法,培养了学生的研究意识、探究能力以及数学学习的情感,而这一切,比单纯获得一个公式更为重要。因此本节课的教学目标中我们增加了“使学生经历圆周率的产生与形成过程”这一重要内容。

《周长》教学设计 篇12

  一、教学目标

  (一)知识与技能

  理解圆周长和圆周率的意义,理解并掌握圆周长的计算方法,并能解决简单的实际问题。

  (二)过程与方法

  经历猜测、验证、操作等学习活动,探究圆周率的近似值,在这个过程中发展学生的数学思维水平及动手操作能力。

  (三)情感态度和价值观

  通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

  二、教学重难点

  教学重点:理解和掌握圆的周长的计算方法。

  教学难点:圆周率的探究。

  三、教学准备

  多媒体课件。

  四、教学过程

  (一)创设情境,引发思考

  1.情境导入,揭示课题。

  教师:老师家的菜板有点开裂,你有好办法吗?(课件出示情境图。)

  学生:给它加一个箍。

  教师:在它的边缘箍上一圈铁皮是个好办法,那么需要多长的铁皮呢?

  教师:求铁皮的长度,就是求圆的什么?

  学生:求铁皮的长度,也就是求圆的周长。

  教师:谁能用自己的话说一说,什么是圆的周长?(板书课题。)

  学生:圆一周的长度叫圆的周长。

  教师:圆的周长与我们之前学习过的图形的周长有什么区别?

  学生:以前我们研究的图形都是由直线围成的,而圆是由曲线围成的。

  2.合理猜想,确定方向。

  教师:圆的周长与圆的什么有关?

  学生:直径、半径。

  教师:圆的周长是直径的几倍?

  学生:……

  教师:怎么验证你的猜测呢?

  学生:量一量,算一算。

  【设计意图】呈现生活情境,引导学生直观感悟什么是圆的周长。因势利导展开猜测,确定研究方向。

  (二)设计方案,展开探究

  1.探讨设计方案。

  (1)如何化曲为直?

  教师:圆是曲线图形,尺子是直的,怎么办?

  学生:滚一滚,绕一绕……

  (2)如何减少误差?

  教师:测量结果可能不准确,有什么办法尽量准确一点呢?

  学生1:多量几次,选出现次数量多的数据。

  学生2:用计算器计算,提高正确率。

  教师:除不尽怎么办?

  学生1:用分数表示。

  学生2:取近似数。

  教师:一般保留两位小数,比较方便。

  【设计意图】圆与学生以前学习的图形有本质的区别――它是曲线图形,如何化曲为直,学生根据生活经验或预习知道用滚或绕的方法可以解决度量的问题。但如何提高准确性,遇到除不尽怎么办,这些问题对老师而言可能不是问题,对于学生而言却是陌生的,教师对此必须有充分的预设。通过讨论统一认识,为下面的实验扫除障碍。

  2.操作获取数据。

  小组合作测量数据,计算圆的周长与直径的比值,结果保留两位小数。

  物品名称

  周长

  直径

  周长与直径的比值

  (三)交流讨论,提升认识

  1.交流质疑。

  (1)小组汇报,教师直接将结果输入电脑。

  【设计意图】在授课的多媒体课件中插入了控件,学生测量和计算的结果在播放状态就可以直接输入,既增加了数据的真实性,增强了授课的互动与趣味性,又便于开展讨论。

  (2)质疑不同数据。

  教师:为什么测量计算的结果不相同?

  学生1:测量有误差,绳子绕的松紧程度不同。

  学生2:尺子不够精确,不到一毫米只能估计。

  教师:是不是尺子再精确一点,测量结果就准确无误?

  教师:有没有其他的方法?

  教师:有没有唯一的得数?

  【设计意图】讨论是必须的,对于学生的困惑不能以书本、师道尊严压服,教师应让学生畅所欲言,只有理解测量的局限性,才更能理解圆周率的特殊性。

  2.概括小结。

  (1)圆周率的意义及读写。(课件出示内容。)

  任意一个圆的周长与它的直径的比值是一个固定不变的数,我们把它叫做圆周率,用字母表示。它是一个无限不循环小数,≈3.……但在实际应用中常常只取它的近似值,例如≈3.14。

  (2)概括周长计算公式。

  如果用C表示圆的周长,就有C=d或C=2r。

  (四)联系实际,解决问题

  1.例题教学。

  (1)出示教材第64页例1。

  一辆自行车轮子的半径大约是33 cm,这辆自行车轮子转1圈,大约可以走多远?(结果保留整米数。)小明家离学校1 km,骑车从家到学校,轮子大约转了多少圈?

  (2)学生尝试解答。

  (3)规范书写。

  C=2r

  2×3.14×33=207.24(cm)≈2(m)

  1000÷2=500(圈)

  答:这辆自行车轮子转1圈,大约可以走2 m。小明骑车从家到学校,轮子大约转了500圈。

  2.巩固练习。

  (1)求下面各圆的'周长。

  ①2×3.14×3=18.84(cm);

  ②3.14×6=18.84(cm);

  ③2×3.14×5=31.4(cm)。

  (2)解决问题。

  ①一个圆形喷水池的半径是5 m,它的周长是多少米?

  2×3.14×5=31.4(米)

  答:它的周长是31.4米。

  ②小红量得一个古代建筑中的大红圆柱的周长是3.77 m。这个圆柱的直径是多少米?(得数保留一位小数。)

  3.77÷3.14≈1.2(米)

  答:这个圆柱的直径大约是1.2米。

  【设计意图】在练习中直接加入已知周长求直径的问题,是为了培养学生的逆向思维能力。在练习时可以追问学生:已知周长怎样求半径?防止学生形成思维定势。

  (五)课堂小结,拓展延伸

  1.这节课你有什么收获?说一说圆的周长与直径的关系。

  2.介绍中国古代对圆周率的研究及伟大成就。

  【设计意图】对圆周率的研究体现了中国古代数学的高度成就,是对学生进行爱国主义教育的绝佳机会,同时也要让学生感受到现代科技的日新月异,从小树立勇攀科学高峰的科学精神。

《周长》教学设计 篇13

  教学目标:

  1、通过复习整理圆的性质、圆的周长和面积计算等重点知识,使学生所学的知识形成系统,能运用圆的知识熟练地解答圆的周长和面积的计算问题。

  2、通过将圆的知识与其他知识进行整合,进一步提高学生解决问题和综合应用的能力,发展学生的空间观念。

  3、在自主探究圆与正方形的关系的学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。

  教学重点:能正确、熟练地进行圆周长和面积的计算。

  教学难点:从探究活动过程中去发现圆与正方形之间的关系。

  教学准备:课件,学具。

  教学过程:

  一、复习旧知,梳理体系

  直接揭题:今天我们来复习本学期所学习的圆的有关知识──“圆的周长和面积复习课”(板书课题:圆的周长和面积复习课)

  教师:我们已经学习了有关圆的知识,同学们还记得我们学习了圆的哪些知识吗?

  小组合作,让同学们把所学的知识整理一下,然后进行汇报。

  汇报交流,课件出示相关内容。

  (1)圆的认识:

  圆心O:决定圆的位置;

  直径d:决定圆的大小;

  半径r:在同一圆内,所有的半径都相等,所有的直径都相等,d=2r;

  圆是轴对称图形,有无数条对称轴。

  (2)圆的周长:

  围成圆的曲线的长度叫圆的周长。

  圆周率:周长与直径的比,是个无限不循环小数。

  圆周长的计算: 。

  (3)圆的面积:

  由长方形的面积来推导出圆的面积,近似长方形的长相当于圆的周长的一半,宽相当于圆的半径。

  圆面积计算: 。

  圆环的面积: 。

  【设计意图】通过小组交流合作,唤醒学生以前所学圆的有关知识,并在交流中进一步加深对圆的性质、圆的`周长和面积的相关知识的掌握和理解,通过梳理形成知识体系。

  二、基本练习,整合知识

  教师:刚才我们对本学期圆的相关知识进行了梳理,现在我们来看看下面几个问题,你能回答吗?

  1、说说下面各题的最简整数比:

  (1)一个圆的半径和直径的比是多少?(1:2)

  (2)一个圆的周长和直径的比是多少?(:1)

  (3)两个圆的半径分别是2 cm和3 cm,,它们的直径比是多少?(2:3)

  周长的比是多少?(2:3)

  面积的比是多少?(4:9)

  【设计意图】将圆的知识和比的知识结合起来,体现了知识的综合应用。并进一步理解圆的各部分知识之间的关系。

  2、一个公园是圆形布局,半径长1 km,圆心处设立了一个纪念碑。公园共有四个门,每两个相邻的门之间有一条笔直的水泥路相通,长约1.41 km。(课件出示题目情境)

  (1)这个公园的围墙有多长?

  教师:请同学们思考,求公园的围墙的长度就是求什么?该怎么求?(因为公园是一个圆形布局,所以求公园围墙的长度就是求圆的周长,根据,=1 km,就能求出圆的周长是6.28 km。)

  (2)北门在南门的什么方向?距离南门多远?(引导学生观察后得出,北门在南门的正北方向,距离南门的距离就是直径的长度,是2 km。)

  (3)如果公园里有一个半径为0.2 km的圆形小湖,这个公园的陆地面积是多少平方千米?(引导学生用大圆面积减去小圆的面积来进行计算,也可以利用圆环的面积来计算这个公园的面积。)

  (4)请你再提出一些数学问题并试着解决。(引导学生不仅可以从四个门的位置和方向去提出数学问题,也可以从圆和正方形的关系方面去提出数学问题并进行解决。)

  【设计意图】通过观察平面图,提高学生的读图能力,并融合用方向和距离确定位置的内容,强化学生的空间观念;求公园的陆地面积其实就是圆环面积的变式,提升学生的知识迁移能力;通过学生提问题这样一个开放式问题,提高学生应用能力。

  三、探究学习,培养能力

  1、用三张同样大小的正方白铁皮(边长是1.8 m)分别按下面三种方式剪出不同规格的圆片。(课件出示问题情境)

  (1)每种规格中的一个圆片周长分别是多少?(引导学生观察每种规格的圆的周长之间的关系,及总周长之间的关系。)

  (2)剪完圆后,哪张白铁皮剩下的废料多些?

  教师:猜想一下剪完圆后哪一张白铁皮剩下的废料多些?你能用自己的方法来证明吗?(引导学生用数据说理,通过计算,引导学生探究其中的一般性原理,假设第一个圆的半径是,某种剪法中剪掉的小圆的半径一定是,此时要剪掉个小圆,剪掉小圆的总面积为,即和第一个圆的面积相等。)

  (3)根据以上的计算,你发现了什么?

  【设计意图】通过三种剪圆的方式判断剩下的废料是否相等的验证过程,一方面提高学生的推理能力;另一方面,提高学生发现和提出问题、分析问题和解决问题的能力。

  四、回顾总结,交流收获

  教师:说说这节课我们学习了什么?你有什么收获或问题?

《周长》教学设计 篇14

  教学目标:

  1.使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确的计算圆的周长。

  2.通过动手操作,培养学生的观察、比较、分析、综合和主动研究、探索解决问题方法的能力。

  3.初步学会透过现象看本质的辨证思想方法。

  4.结合圆周率的学习,对学生进行爱国主义教育。

  学重点:正确计算圆的周长。

  教学难点:理解圆周率的意义,推导圆周长的计算公式。

  教具准备:多媒体课件、系绳的小球。

  学具准备:塑料圆片、正方形纸板、圆规、剪子、直尺、细绳

  一、以旧引新,导入新课

  1.复习正方形的周长。

  ①复习周长的意义。什么叫周长?(学生汇报后,课件演示周长的意义)。

  ②复习正方形周长的意义。(课件演示小花狗围着正方形跑一圈正方形的周长闪动红色)要求小花狗所跑路程,实际上就是求这个正方形的什么?

  2.揭示圆的周长。

  (1)(课件演示小白狗围绕圆形跑一圈圆形的周长闪动黄色)要求这只小白狗所跑的路程实际上又是求这个圆的什么?(圆的`周长,揭示课题)你能说说什么叫圆的周长吗? (教师完成板书,学生读书)

  (2)同位用自己带来的圆形实物互相口述圆的周长。

  二、探索圆周长与直径的关系

  1、动手操作,合作交流。

  师问:我们知道了什么叫圆的周长,那么怎样测量圆的周长呢? 可以用什么工具来测量?

  ①请同学们拿出你们带来的测量工具,以四人小组为单位,想办法测量你手中圆的周长并做好填表记录,(边量边交流测量方法)让我看哪个小组做得最棒。(教师巡视操作过程)

  周长(C)直径(d)周长与直径的关系( )

  ②请四人小组上台演示操作过程,边操作边说方法。

  2、探索圆周长与直径的关系(课件演示填表)

  (1)请同学们看屏幕的表格,认真观察比较一下,想一想圆的周长跟什么有关系?

  (2)讨论:究竟圆的周长与它的直径有什么关系呢?

  (小组汇报)引出圆周率

  任何圆的周长总是它的直径长度的3倍多一些。(板书)

  3、揭示圆周率的概念。

  (1)师:科学家的大量准确测量和精确计算得出,表示这个3倍多一些的数,是一个固定不变的数,这个固定不变的数叫什么?请自学99页第二自然段。(叫做圆周率)什么叫圆周率呢?用哪个字母表示。谁能说一说(指导读写π。)

  (2)了解圆周率的历史。(课件演示圆周率的历史,对学生进行思想教育和爱国主义教育。)

  关于圆周率还有一段历史呢。请同学们打开书看99页下面小的方字,想:通过看书你知道了什么? 我国古代著名数学家祖冲之在计算圆周率方面做出了什么贡献?这个结果比外国数学家得到这个结果整整早了一千多年,可见我国古代人民的智慧和力量。但随着科学技术发展,外国数学家利用计算机已经计算到小数点后一亿多位,我国现在又落后了。哪我们还有机会超过外国人吗?没错只要我们努力学习将来一定会让中国走在世界前列。

  (3)推导圆周长的计算公式。

  (1)师:通过刚才的探索,我们已经知道圆的周长与直径的关系了,你能推导出圆周长的计算公式吗?(小组讨论)

  (2)学生汇报讨论结果,板书:圆的周长=直径×圆周率

  那么要求圆的周长,你必须知道什么?(直径或半径)你会求吗?

  4. 应用圆的周长公式,解决简单的应际问题。

  出示例1(学生自学并独立完成)。教师检查自学情况,请一名同学上台板演。教师评点。

  5看书、质疑

  (1)若将例1的直径改为半径,会求它的周长吗?

  (2)及时反馈,完成第100页(练一练1、2)。

  三、运用新知,解决问题

  1.下面的说法对吗?并说明理由。

  (1)圆的周长是它直径的π倍。

  (2)大圆的圆周率大于小圆的圆周率。

  (3)π=3.14

  2.解答练习二十一第2题(课件演示)

  3.测量一圆形实物直径,计算它的周长。

  4、扣展练习

  (1)画一个周长12.56厘米的圆

  (2)思考题。(课件出示两只蜜蜂分别在一个大圆和两个小圆上走一圈)大圆的周长和两个小圆的周长之和同样长吗?为什么?

  四、总结全课,学生互评。

  这节课你学到了什么?谁的表现最佳?

  板书设计:

  圆 的周长

  围成圆的曲线的长叫做圆的周长

  任何圆的周长总是直径的3倍多一些(圆周率)

  例1、一块圆形铝片的直径是5厘米,它的周长是多少?

《周长》教学设计 篇15

  教学目标:

  1.通过复习整理圆的性质、圆的周长和面积计算等重点知识,使学生所学的知识形成系统,能运用圆的知识熟练地解答圆的周长和面积的计算问题。

  2.通过将圆的知识与其他知识进行整合,进一步提高学生解决问题和综合应用的能力,发展学生的空间观念。

  3.在自主探究圆与正方形的关系的学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。

  教学重点:能正确、熟练地进行圆周长和面积的计算。

  教学难点:从探究活动过程中去发现圆与正方形之间的关系。

  教学准备:课件,学具。

  教学过程:

  一、复习旧知,梳理体系

  直接揭题:今天我们来复习本学期所学习的圆的有关知识──“圆的周长和面积复习课”(板书课题:圆的周长和面积复习课)

  教师:我们已经学习了有关圆的知识,同学们还记得我们学习了圆的哪些知识吗?

  小组合作,让同学们把所学的知识整理一下,然后进行汇报。

  汇报交流,课件出示相关内容。

  (1)圆的认识:

  圆心O:决定圆的位置;

  直径d:决定圆的大小;

  半径r:在同一圆内,所有的半径都相等,所有的直径都相等,d=2r;

  圆是轴对称图形,有无数条对称轴。

  (2)圆的周长:

  围成圆的曲线的长度叫圆的周长。

  圆周率:周长与直径的比,是个无限不循环小数。

  圆周长的计算:。

  (3)圆的面积:

  由长方形的面积来推导出圆的面积,近似长方形的长相当于圆的周长的一半,宽相当于圆的半径。

  圆面积计算:。

  圆环的面积:。

  【设计意图】通过小组交流合作,唤醒学生以前所学圆的有关知识,并在交流中进一步加深对圆的性质、圆的周长和面积的相关知识的掌握和理解,通过梳理形成知识体系。

  二、基本练习,整合知识

  教师:刚才我们对本学期圆的相关知识进行了梳理,现在我们来看看下面几个问题,你能回答吗?

  1.说说下面各题的.最简整数比:

  (1)一个圆的半径和直径的比是多少?(1:2)

  (2)一个圆的周长和直径的比是多少?(:1)

  (3)两个圆的半径分别是2 cm和3 cm,,它们的直径比是多少?(2:3)

  周长的比是多少?(2:3)

  面积的比是多少?(4:9)

  【设计意图】将圆的知识和比的知识结合起来,体现了知识的综合应用。并进一步理解圆的各部分知识之间的关系。

  2.一个公园是圆形布局,半径长1 km,圆心处设立了一个纪念碑。公园共有四个门,每两个相邻的门之间有一条笔直的水泥路相通,长约1.41 km。(课件出示题目情境)

  (1)这个公园的围墙有多长?

  教师:请同学们思考,求公园的围墙的长度就是求什么?该怎么求?(因为公园是一个圆形布局,所以求公园围墙的长度就是求圆的周长,根据,=1 km,就能求出圆的周长是6.28 km。)

  (2)北门在南门的什么方向?距离南门多远?(引导学生观察后得出,北门在南门的正北方向,距离南门的距离就是直径的长度,是2 km。)

  (3)如果公园里有一个半径为0.2 km的圆形小湖,这个公园的陆地面积是多少平方千米?(引导学生用大圆面积减去小圆的面积来进行计算,也可以利用圆环的面积来计算这个公园的面积。)

  (4)请你再提出一些数学问题并试着解决。(引导学生不仅可以从四个门的位置和方向去提出数学问题,也可以从圆和正方形的关系方面去提出数学问题并进行解决。)

  【设计意图】通过观察平面图,提高学生的读图能力,并融合用方向和距离确定位置的内容,强化学生的空间观念;求公园的陆地面积其实就是圆环面积的变式,提升学生的知识迁移能力;通过学生提问题这样一个开放式问题,提高学生应用能力。

  三、探究学习,培养能力

  1.用三张同样大小的正方白铁皮(边长是1.8 m)分别按下面三种方式剪出不同规格的圆片。(课件出示问题情境)

  (1)每种规格中的一个圆片周长分别是多少?(引导学生观察每种规格的圆的周长之间的关系,及总周长之间的关系。)

  (2)剪完圆后,哪张白铁皮剩下的废料多些?

  教师:猜想一下剪完圆后哪一张白铁皮剩下的废料多些?你能用自己的方法来证明吗?(引导学生用数据说理,通过计算,引导学生探究其中的一般性原理,假设第一个圆的半径是,某种剪法中剪掉的小圆的半径一定是,此时要剪掉个小圆,剪掉小圆的总面积为,即和第一个圆的面积相等。)

  (3)根据以上的计算,你发现了什么?

  【设计意图】通过三种剪圆的方式判断剩下的废料是否相等的验证过程,一方面提高学生的推理能力;另一方面,提高学生发现和提出问题、分析问题和解决问题的能力。

  四、回顾总结,交流收获

  教师:说说这节课我们学习了什么?你有什么收获或问题?

  【设计意图】通过回顾,理顺各个知识点,让学生明确学习了什么内容,反思自己对知识的掌握情况。

《周长》教学设计 篇16

  教学目标:

  1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。

  2、运用圆的周长的知识解决现实生活中的问题,体验数学的价值。

  3、培养学生的操作试验、分析问题解决问题的能力。使学生掌握一些数学方法。

  4、通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。

  教学重点:推导圆的周长的计算公式,准确计算圆的周长。

  教学难点:理解圆周率的意义。

  教具准备:圆片、铁圈、绳子、直尺。

  教学方法:观察、演示、小组合作交流

  教学过程:

  一、把准认知冲突,激发学习愿望。

  1、问题从情境中引入:花花和亮亮进行赛跑比赛,花花绕着长方形地跑,亮亮绕着圆形跑。花花跑的路程是长方形的什么?亮亮呢?同桌互相指一指学具中圆片的周长,说说圆的周长与长方形或正方形等图形的周长有什么不同?谁能说说什么是圆的周长?如果两人用相同速度,都跑一周,你认为花花和亮亮谁获胜的可能性大些?(引导揭示课题:圆的周长)

  2、化曲为直,测量周长。

  (1)(出示铁环)直尺是直的,而圆是由曲线组成的,怎样测量圆的周长?讨论:把铁环拉直后测量――“剪开拉直”。

  (2)出示易拉罐(指底面),这是一个什么圆形?你能将它“剪开拉直”测量出它的周长吗?你还能想出什么办法,将它化曲为直,测量出周长呢?

  讨论:

  方法1:可以用带子绕圆一周,剪去多余的部分,测出周长;

  方法2:将圆在直尺上滚动一周,测出周长。(板书:“先绕后量”和“滚动测量”)

  (3)教师拿一根绳子拴着一个物体,将它旋转几周,指出物体旋转的轨迹是一个圆,你能用“化曲为直”的方法测量出圆的周长吗?(不能)教师再指出黑板上所画的圆,你还能用“化曲为直”的方法,测量它的周长吗?(不能)指出:化曲为直在测量圆的周长时存在一定局限性,必须要寻找一种普遍的方法来计算圆周长的方法。

  二、经历探究全程,验证猜想发现。

  一圆的周长与直径有关系。

  1、猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?

  2、验证:结合学生的回答,演示三个大小不同的圆,滚动一周。指出哪个圆的直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?

  3、总结:圆的直径的长短,决定了圆周长的长短。

  二圆的.周长与直径的倍数关系。

  1、猜想:正方形的周长总是边长的4倍,所以正方形的周长=边长×4。对照这幅图,猜一猜,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的4倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的2倍。)小结:通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?

  2、验证:(小组合作)用先绕后量或滚动测量的方法,测量出圆的周长,求出周长与直径的比值。周长C(毫米)直径(毫米)的比值(保留两位小数)讨论从表中你们小组发现了什么?(圆的周长除以直径的商是3点几,圆的周长总是直径的3倍多一些)

  三、感受数学文化,激发情感教育。

  1、介绍祖冲之在求圆周率中做出的贡献,让学生想像祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(附:祖冲之在一个直径3.3333米的大圆里割到正一万二千二百八十八边形,计算出每条边的长度是0.852毫米。虽然如此,祖冲之并没有停步,继续分割得到正二万四千五百七十六边形,每条边已经和圆周紧密贴在一起了。祖冲之经过不懈地努力和严谨的计算,终于得到了比较精确的圆周长和直径的比值在3.1415926和3.1418927之间。这个结论在当时的世界上独一无二,比欧洲人发现这一结果至少要早一千多年。)

  2、介绍计算机计算圆周率的情况。

  3、教学圆周率:π≈3.14。

  四、归纳圆的周长的计算公式。

  学生讨论:(1)求圆的周长必须知道哪些条件?

  (2)如果用C表示圆的周长,求圆周长的字母公式有几个?各是什么?

  生回答,教师板书:C=πd或C=2πr

221381
领取福利

微信扫码领取福利

《周长》教学设计(精选16篇)

微信扫码分享