欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 互为反函数的函数图象间的关系

互为反函数的函数图象间的关系

网友 分享 时间: 加入收藏 我要投稿 点赞 8
2

互为反函数的函数图象间的关系

 互为反函数的函数图象间的关系

一、        教学目标

1.理解并掌握互为反函数的函数图像间的关系定理,运用定理解决有关反函数的问题,深化对互为反函数本质的认识.

2.运用定理画互为反函数的图像,研究互为反函数的有关性质,提高解函数综合问题的能力.

3.提高学生的形象思维与抽象思维相结合的逻辑思维能力,培养学生数形结合的数学思想和转化的数学思想.

二、        教学重点

      互为反函数的函数图象间的关系和数形结合的数学思想

三、        教学难点

      互为反函数的函数图象间的关系

四、        教学方法

启发式教学方法

五、        教学手段

多媒体课件

六、        教学过程

(一)     复习:

1.  求反函数的步骤 (1解 2换 3注明)

2.  求出下列函数的反函数

① y=2x+4  (x∈r)     (y=x/2 -2   x∈r)

② y=6-2x   (x∈r)     (y=3- x/2   x∈r)

③ y=x2     (x≥0)     (y=x1/2        x≥0)

(二)     新课导入

1.  分别将上述三个函数与其反函数的图象做在同一个直角坐标系中

2.  分析各图中互为反函数的函数图象间的关系

3.  给出定理:函数y=f(x)的图象和它的反函数y=f 1(x)图象关于直线

   y=x对称

4.  讲解例一:

例1 求函数y=x3 (x∈r)反函数,并画出原来的函数和它的反函数

的图象。

解:由y=x3,得x=y1/3。因此,函数y=x3反函数是y=x1/3 (x∈r)。函数y=x3 (x∈r)和它的反函数y=x1/3 (x∈r)的图象略。

5.  讲解例二:

    例2 在直角坐标内,画出直线y=x,然后找出下面这些点关于直线y=x的对称点,并写出它们的坐标:

        a (2,3)  b (1,0)  c(-2,-1)  d (0,-1)

    解:图略

        点a的对称点为a’ (3,2),点b的对称点为b’ (0,1),

        点c的对称点为c’ (-1,-2),点d的对称点为d’(-1,0)。

6.  给出推论:点(a,b)关于直线y=x的对称点为(b,a)

7.  练习:函数f(x)=ax+b的图象经过(1,3),其反函数的图象经过(2,0),

                求f(x)的解析式。

解:因为函数f(x)的反函数图象经过点(2,0),根据定理和推论,

               函数f(x)的图象经过点(0,2)。

    将点(0,2)(1,3)的横、纵坐标分别代入f(x)的解析式得:

2页,当前第112
221381
领取福利

微信扫码领取福利

互为反函数的函数图象间的关系

微信扫码分享

月会员
每天200次下载
2元/30天
直接下载
单次下载
0.1元/次
微信支付
欢迎使用微信支付
扫一扫支付
金额:
常见问题

请登录之后再下载!

下载中心

您的账号注册成功!密码为:123456,当前为默认信息,请及时修改

下载文件立即修改

帮助中心

如何获取自己的订单号?

打开微信,找到微信支付,找到自己的订单,就能看到自己的交易订单号了。

阅读并接受《用户协议》
注:各登录账户无关联!请仅用一种方式登录。


用户注册协议

一、 本网站运用开源的网站程序平台,通过国际互联网络等手段为会员或游客提供程序代码或者文章信息等服务。本网站有权在必要时修改服务条款,服务条款一旦发生变动,将会在重要页面上提示修改内容或通过其他形式告知会员。如果会员不同意所改动的内容,可以主动取消获得的网络服务。如果会员继续享用网络服务,则视为接受服务条款的变动。网站保留随时修改或中断服务而不需知照会员的权利。本站行使修改或中断服务的权利,不需对会员或第三方负责。

关闭