欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 第一章集合与简易逻辑章末总结

第一章集合与简易逻辑章末总结

网友 分享 时间: 加入收藏 我要投稿 点赞 11
0

第一章集合与简易逻辑章末总结

一、本章数学思想方法1、分类讨论思想(1)分类讨论问题已成为高考考查学生的知识与能力的热点问题,这是因为:其一,分类讨论问题一般都覆盖知识点较多,有利于知识面的考查;其二,解分类讨论问题需要有一定的分析能力,一定的分类思想与分类技巧,有利于对学生能力的考查;其三,分类思想与生产实践和高等数学都紧密相关。(2)解分类讨论问题的实质:整体问题化为若干个部分来解决,化成部分后从而增加了题设的条件,从而将问题解答进行到底,这正是我们要分类讨论的根本原因。(3)分类讨论要注意的几点:(1)根据问题实际,做到分类不重不漏;(2)熟练地掌握基础知识,做到融汇贯通,是解好分类讨论问题的前提条件;(3)不断地的总结经验和教训,克服分类讨论中的主观性和盲目性;(4)要注意简化或避免分类讨论,优化解题过程。【例1】  已知三元素集 , 且a=b,求x与y的值。【解】∵0∈b,a=b,∴0∈a。又集合为3元素集,∴x≠xy,∴x≠0.又0∈b,y∈b,∴y≠0,从而x-y=0,即x=y这时 , ,∴|x|=x2.则x=0(舍去)x=±1当x=1时,a={1,1,0}舍去;当x=-1时,a={-1,1,0},b={0,1,-1}满足a=b,∴x=y=-1.【点评】  此题若开始就讨论x=0,xy=0,x-y=0则较繁琐,故先分析,后讨论.【例2】  解不等式 分析  将定义区域,划分为三段,x<-9,-9≤x≤ ,x> 分别讨论.解  (1)当x<-9时,-(x+9)+(3x-4)+2>0,2x-11>0.x> ,与x<-9矛盾,原不等式无解;(2)当-9≤x≤ 时,(x+9)+(3x-4)+2>0,得x> ,∴ <x≤ (3)当x> 时,(x+9)-(3x-4)+2>0得x< ,∴ <x< 综上可得原不等式解集为{x│ <x< }【点评】  例2中绝对值的存在是解题的一大障碍,因此必须去掉绝对值;如何去掉绝对值呢?须对问题的定义域划分区间,分类讨论,才能去掉绝对值符号,这正是解这个问题分类讨论的原因.分点的确定、划分区间至关重要,它是分类讨论解题关键一环.2、数形结合思想数形结合既是数学学科的重要思想,又是数学研究的常用方法.纵观历年高考试题。以数形结合的思想方法巧妙运用解决的问题比比皆是.认清集合的特征,准确地转化为图形关系,借助图形使问题直观、具体、准确地得到解决,因此处理集合问题要重视数形结合思想方法的运用(如数轴、几何图形、文氏图等).【例3】  设全集为u,在下列条件中,是b  a的充要条件的有(  )a.1个              b.2个              c.3个               d.4个(1) (2) (3) (4) 解析  本题可以利用文氏图,化抽象为直观,从而化难为易,选d.uab【例4】  已知 ,,且 ,求实数a的取值范围.解: 方程组 有解圆 与直线 有公共点≤ ≤ ≤ 故 的取值范围是 【点评】  将集合之间的运算转化为图形之间的运算,将集合语言转化为图形语言,然后用代数的方法解决.

2页,当前第112
221381
领取福利

微信扫码领取福利

第一章集合与简易逻辑章末总结

微信扫码分享

月会员
每天200次下载
2元/30天
直接下载
单次下载
0.1元/次
微信支付
欢迎使用微信支付
扫一扫支付
金额:
常见问题

请登录之后再下载!

下载中心

您的账号注册成功!密码为:123456,当前为默认信息,请及时修改

下载文件立即修改

帮助中心

如何获取自己的订单号?

打开微信,找到微信支付,找到自己的订单,就能看到自己的交易订单号了。

阅读并接受《用户协议》
注:各登录账户无关联!请仅用一种方式登录。


用户注册协议

一、 本网站运用开源的网站程序平台,通过国际互联网络等手段为会员或游客提供程序代码或者文章信息等服务。本网站有权在必要时修改服务条款,服务条款一旦发生变动,将会在重要页面上提示修改内容或通过其他形式告知会员。如果会员不同意所改动的内容,可以主动取消获得的网络服务。如果会员继续享用网络服务,则视为接受服务条款的变动。网站保留随时修改或中断服务而不需知照会员的权利。本站行使修改或中断服务的权利,不需对会员或第三方负责。

关闭