欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 3.1 等差数列(精选17篇)

3.1 等差数列(精选17篇)

网友 分享 时间: 加入收藏 我要投稿 点赞

3.1 等差数列(精选17篇)

3.1 等差数列 篇1

  教学目标 

  1.理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题.

  (1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念;

  (2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项;

  (3)能通过通项公式与图像认识的性质,能用图像与通项公式的关系解决某些问题.

  2.通过的图像的应用,进一步渗透数形结合思想、函数思想;通过通项公式的运用,渗透方程思想.

  3.通过概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对的研究,使学生明确与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.

  关于的教学建议

  (1)知识结构

  (2)重点、难点分析

  ①教学重点是的定义和对通项公式的认识与应用,是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.

  ②通过不完全归纳法得出的通项公式,所以是教学中的一个难点;另外, 出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.

  (3)教法建议

  ①本节内容分为两课时,一节为的定义与表示法,一节为通项公式的应用.

  ②定义的引出可先给出几组,让学生观察、比较,概括共同规律,再由学生尝试说出的定义,对程度差的学生可以提示定义的结构:“……的数列叫做”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是的数列作为反例,再由学生修改其定义,逐步完善定义.

  ③的定义归纳出来后,由学生举一些的例子,以此让学生思考确定一个的条件.

  ④由学生根据一般数列的表示法尝试表示,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项 可看作项数 的一次型( )函数,这与其图像的形状相对应.

  ⑤有穷的末项与通项是有区别的,数列的通项公式 是数列第 项 与项数 之间的函数关系式,有穷的项数未必是 ,即其末项未必是该数列的第 项,在教学中一定要强调这一点.

  ⑥前 项和的公式推导离不开的性质,所以在本节课应补充一些重要的性质;另外可让学生研究的子数列,有规律的子数列会引起学生的兴趣.

  ⑦是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.

  通项公式的教学设计示例

  教学目标 

  1.通过教与学的互动,使学生加深对通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;

  2.利用通项公式求的项、项数、公差、首项,使学生进一步体会方程思想;

  3.通过参与编题解题,激发学生学习的兴趣.

  教学重点,难点

  教学重点是通项公式的认识;教学难点 是对公式的灵活运用.

  教学用具

  实物投影仪,多媒体软件,电脑.

  教学方法

  研探式.

  教学过程 

  一.复习提问

  前一节课我们学习了的概念、表示法,请同学们回忆的定义,其表示法都有哪些?

  的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.

  二.主体设计

  通项公式 反映了项 与项数 之间的函数关系,当的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 ).找学生试举一例如:“已知 中,首项 ,公差 ,求 .”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.

  1.方程思想的运用

  (1)已知 中,首项 ,公差 ,则-397是该数列的第______项.

  (2)已知 中,首项 , 则公差

  (3)已知 中,公差 , 则首项

  这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.

  2.基本量方法的使用

  (1)已知 中, ,求 的值.

  (2)已知 中, , 求 .

  若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些是确定的,由 和 写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于 和 的二元方程组,以求得 和 , 和 称作基本量.

  教师提出新的问题,已知的一个条件(等式),能否确定一个?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).

  如:已知 中, …

  由条件可得 即 ,可知 ,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题

  (3)已知 中, 求 ; ; ; ;….

  类似的还有

  (4)已知 中, 求 的值.

  以上属于对数列的项进行定量的研究,有无定性的判断?引出

  3.研究的单调性

  ,考察 随项数 的变化规律.着重考虑 的情况. 此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.

  4.研究项的符号

  这是为研究前 项和的最值所做的准备工作.可配备的题目如

  (1)已知数列 的通项公式为 ,问数列从第几项开始小于0?

  (2) 从第________项起以后每项均为负数.

  三.小结

  1. 用方程思想认识通项公式;

  2. 用函数思想解决问题.

  四.板书设计 

  通项公式  1. 方程思想的运用

  2. 基本量方法的使用

  3. 研究的单调性

  4. 研究项的符号

3.1 等差数列 篇2

  教学目的:1.明确等差数列的定义,掌握等差数列的通项公式;    2.会解决知道 中的三个,求另外一个的问题           教学重点:等差数列的概念,等差数列的通项公式 教学难点:等差数列的性质 教学过程: 一、复习引入:(课件第一页)   二、讲解新课:        1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的 差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。(课件第二页) ⑴.公差d一定是由后项减前项所得,而不能用前项减后项来求; ⑵.对于数列{ },若 - =d (与n无关的数或字母),n≥2,n∈n ,则此数列是等差数列,d 为公差。 2.等差数列的通项公式: 【或 】等差数列定义是由一数列相邻两项之间关系而得。若一等差数列 的首项是 ,公差是d,则据其定义可得: 即: 即: 即: …… 由此归纳等差数列的通项公式可得:   (课件第二页) 第二通项公式             (课件第二页) 三、例题讲解 例1 ⑴求等差数列8,5,2…的第20项(课本p111) ⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项? 例2 在等差数列 中,已知 , ,求 , , 例3将一个等差数列的通项公式输入计算器数列 中,设数列的第s项和第t项分别为 和 ,计算 的值,你能发现什么结论?并证明你的结论。  小结:①这就是第二通项公式的变形,②几何特征,直线的斜率 例4 梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度。(课本p112例3) 例5 已知数列{ }的通项公式 ,其中 、 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?(课本p113例4)    分析:由等差数列的定义,要判定 是不是等差数列,只要看 (n≥2)是不是一个与n无关的常数。 注:①若p=0,则{ }是公差为0的等差数列,即为常数列q,q,q,… ②若p≠0, 则{ }是关于n的一次式,从图象上看,表示数列的各点均在一次函数y=px+q的图象上,一次项的系数是公差,直线在y轴上的截距为q. ③数列{ }为等差数列的充要条件是其通项 =pn+q (p、q是常数)。称其为第3通项公式④判断数列是否是等差数列的方法是否满足3个通项公式中的一个。 例6.成等差数列的四个数的和为26,第二项与第三项之积为40,求这四个数.四、练习: 1.(1)求等差数列3,7,11,……的第4项与第10项. (2)求等差数列10,8,6,……的第20项. (3)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由. (4)-20是不是等差数列0,-3 ,-7,……的项?如果是,是第几项?如果不是,说明理由. 2.在等差数列{ }中,(1)已知 =10, =19,求 与d; 五、课后作业:习题3.2  1(2),(4)  2.(2), 3, 4,  5, 6 .  8.  9.

3.1 等差数列 篇3

  教学目标 

  1.理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题.

  (1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念;

  (2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项;

  (3)能通过通项公式与图像认识的性质,能用图像与通项公式的关系解决某些问题.

  2.通过的图像的应用,进一步渗透数形结合思想、函数思想;通过通项公式的运用,渗透方程思想.

  3.通过概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对的研究,使学生明确与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.

  关于的教学建议

  (1)知识结构

  (2)重点、难点分析

  ①教学重点是的定义和对通项公式的认识与应用,是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.

  ②通过不完全归纳法得出的通项公式,所以是教学中的一个难点;另外, 出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.

  (3)教法建议

  ①本节内容分为两课时,一节为的定义与表示法,一节为通项公式的应用.

  ②定义的引出可先给出几组,让学生观察、比较,概括共同规律,再由学生尝试说出的定义,对程度差的学生可以提示定义的结构:“……的数列叫做”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是的数列作为反例,再由学生修改其定义,逐步完善定义.

  ③的定义归纳出来后,由学生举一些的例子,以此让学生思考确定一个的条件.

  ④由学生根据一般数列的表示法尝试表示,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项 可看作项数 的一次型( )函数,这与其图像的形状相对应.

  ⑤有穷的末项与通项是有区别的,数列的通项公式 是数列第 项 与项数 之间的函数关系式,有穷的项数未必是 ,即其末项未必是该数列的第 项,在教学中一定要强调这一点.

  ⑥前 项和的公式推导离不开的性质,所以在本节课应补充一些重要的性质;另外可让学生研究的子数列,有规律的子数列会引起学生的兴趣.

  ⑦是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.

  通项公式的教学设计示例

  教学目标 

  1.通过教与学的互动,使学生加深对通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;

  2.利用通项公式求的项、项数、公差、首项,使学生进一步体会方程思想;

  3.通过参与编题解题,激发学生学习的兴趣.

  教学重点,难点

  教学重点是通项公式的认识;教学难点 是对公式的灵活运用.

  教学用具

  实物投影仪,多媒体软件,电脑.

  教学方法

  研探式.

  教学过程 

  一.复习提问

  前一节课我们学习了的概念、表示法,请同学们回忆的定义,其表示法都有哪些?

  的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.

  二.主体设计

  通项公式 反映了项 与项数 之间的函数关系,当的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 ).找学生试举一例如:“已知 中,首项 ,公差 ,求 .”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.

  1.方程思想的运用

  (1)已知 中,首项 ,公差 ,则-397是该数列的第______项.

  (2)已知 中,首项 , 则公差

  (3)已知 中,公差 , 则首项

  这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.

  2.基本量方法的使用

  (1)已知 中, ,求 的值.

  (2)已知 中, , 求 .

  若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些是确定的,由 和 写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于 和 的二元方程组,以求得 和 , 和 称作基本量.

  教师提出新的问题,已知的一个条件(等式),能否确定一个?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).

  如:已知 中, …

  由条件可得 即 ,可知 ,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题

  (3)已知 中, 求 ; ; ; ;….

  类似的还有

  (4)已知 中, 求 的值.

  以上属于对数列的项进行定量的研究,有无定性的判断?引出

  3.研究的单调性

  ,考察 随项数 的变化规律.着重考虑 的情况. 此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.

  4.研究项的符号

  这是为研究前 项和的最值所做的准备工作.可配备的题目如

  (1)已知数列 的通项公式为 ,问数列从第几项开始小于0?

  (2) 从第________项起以后每项均为负数.

  三.小结

  1. 用方程思想认识通项公式;

  2. 用函数思想解决问题.

  四.板书设计 

  通项公式  1. 方程思想的运用

  2. 基本量方法的使用

  3. 研究的单调性

  4. 研究项的符号

3.1 等差数列 篇4

  教学目标

  1.理解等差数列的概念,把握等差数列的通项公式,并能运用通项公式解决简单的问题.

  (1)了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判定一个数列是等差数列,了解等差中项的概念;

  (2)正确熟悉使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;

  (3)能通过通项公式与图像熟悉等差数列的性质,能用图像与通项公式的关系解决某些问题.

  2.通过等差数列的图像的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想.

  3.通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透非凡与一般的辩证唯物主义观点.

  关于等差数列的教学建议

  (1)知识结构

  (2)重点、难点分析

  ①教学重点是等差数列的定义和对通项公式的熟悉与应用,等差数列是非凡的数列,定义恰恰是其非凡性、也是本质属性的准确反映和高度概括,准确把握定义是正确熟悉等差数列,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,等差数列的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.

  ②通过不完全归纳法得出等差数列的通项公式,所以是教学中的一个难点;另外, 出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.

  (3)教法建议

  ①本节内容分为两课时,一节为等差数列的定义与表示法,一节为等差数列通项公式的应用.

  ②等差数列定义的引出可先给出几组等差数列,让学生观察、比较,概括共同规律,再由学生尝试说出等差数列的定义,对程度差的学生可以提示定义的结构:“……的数列叫做等差数列”,由学生把限定条件一一列举出来,为等比数列的定义作预备.假如学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是等差数列的数列作为反例,再由学生修改其定义,逐步完善定义.

  ③等差数列的定义归纳出来后,由学生举一些等差数列的例子,以此让学生思考确定一个等差数列的条件.

  ④由学生根据一般数列的表示法尝试表示等差数列,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项 可看作项数 的一次型( )函数,这与其图像的外形相对应.

  ⑤有穷等差数列的末项与通项是有区别的,数列的通项公式 是数列第 项 与项数 之间的函数关系式,有穷等差数列的项数未必是 ,即其末项未必是该数列的第 项,在教学中一定要强调这一点.

  ⑥等差数列前 项和的公式推导离不开等差数列的性质,所以在本节课应补充一些重要的性质;另外可让学生研究等差数列的子数列,有规律的子数列会引起学生的爱好.

  ⑦等差数列是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.

  等差数列通项公式的教学设计示例

  教学目标

  1.通过教与学的互动,使学生加深对等差数列通项公式的熟悉,能参与编拟一些简单的问题,并解决这些问题;

  2.利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;

  3.通过参与编题解题,激发学生学习的爱好.

  教学重点,难点

  教学重点是通项公式的熟悉;教学难点是对公式的灵活运用.

  教学用具

  实物投影仪,多媒体软件,电脑.

  教学方法

  研探式.

  教学过程

  一.复习提问

  前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?

  等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.

  二.主体设计

  通项公式 反映了项 与项数 之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 ).找学生试举一例如:“已知等差数列 中,首项 ,公差 ,求 .”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.

  1.方程思想的运用

  (1)已知等差数列 中,首项 ,公差 ,则-397是该数列的第______项.

  (2)已知等差数列 中,首项 , 则公差

  (3)已知等差数列 中,公差 , 则首项

  这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.

  2.基本量方法的使用

  (1)已知等差数列 中, ,求 的值.

  (2)已知等差数列 中, , 求 .

  若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些等差数列是确定的,由 和 写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于 和 的二元方程组,以求得 和 , 和 称作基本量.

  教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).

  如:已知等差数列 中, …

  由条件可得 即 ,可知 ,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题

  (3)已知等差数列 中, 求 ; ; ; ;….

  类似的还有

  (4)已知等差数列 中, 求 的值.

  以上属于对数列的项进行定量的研究,有无定性的判定?引出

  3.研究等差数列的单调性

  ,考察 随项数 的变化规律.着重考虑 的情况. 此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.

  4.研究项的符号

  这是为研究等差数列前 项和的最值所做的预备工作.可配备的题目如

  (1)已知数列 的通项公式为 ,问数列从第几项开始小于0?

  (2)等差数列 从第________项起以后每项均为负数.

  三.小结

  1. 用方程思想熟悉等差数列通项公式;

  2. 用函数思想解决等差数列问题.

  四.板书设计

  等差数列通项公式1. 方程思想的运用

  2. 基本量方法的使用

  3. 研究等差数列的单调性

  4. 研究项的符号

3.1 等差数列 篇5

  教学目标 

  1.理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题.

  (1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念;

  (2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项;

  (3)能通过通项公式与图像认识的性质,能用图像与通项公式的关系解决某些问题.

  2.通过的图像的应用,进一步渗透数形结合思想、函数思想;通过通项公式的运用,渗透方程思想.

  3.通过概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对的研究,使学生明确与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.

  关于的教学建议

  (1)知识结构

  (2)重点、难点分析

  ①教学重点是的定义和对通项公式的认识与应用,是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.

  ②通过不完全归纳法得出的通项公式,所以是教学中的一个难点;另外, 出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.

  (3)教法建议

  ①本节内容分为两课时,一节为的定义与表示法,一节为通项公式的应用.

  ②定义的引出可先给出几组,让学生观察、比较,概括共同规律,再由学生尝试说出的定义,对程度差的学生可以提示定义的结构:“……的数列叫做”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是的数列作为反例,再由学生修改其定义,逐步完善定义.

  ③的定义归纳出来后,由学生举一些的例子,以此让学生思考确定一个的条件.

  ④由学生根据一般数列的表示法尝试表示,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项 可看作项数 的一次型( )函数,这与其图像的形状相对应.

  ⑤有穷的末项与通项是有区别的,数列的通项公式 是数列第 项 与项数 之间的函数关系式,有穷的项数未必是 ,即其末项未必是该数列的第 项,在教学中一定要强调这一点.

  ⑥前 项和的公式推导离不开的性质,所以在本节课应补充一些重要的性质;另外可让学生研究的子数列,有规律的子数列会引起学生的兴趣.

  ⑦是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.

  通项公式的教学设计示例

  教学目标 

  1.通过教与学的互动,使学生加深对通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;

  2.利用通项公式求的项、项数、公差、首项,使学生进一步体会方程思想;

  3.通过参与编题解题,激发学生学习的兴趣.

  教学重点,难点

  教学重点是通项公式的认识;教学难点 是对公式的灵活运用.

  教学用具

  实物投影仪,多媒体软件,电脑.

  教学方法

  研探式.

  教学过程 

  一.复习提问

  前一节课我们学习了的概念、表示法,请同学们回忆的定义,其表示法都有哪些?

  的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.

  二.主体设计

  通项公式 反映了项 与项数 之间的函数关系,当的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 ).找学生试举一例如:“已知 中,首项 ,公差 ,求 .”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.

  1.方程思想的运用

  (1)已知 中,首项 ,公差 ,则-397是该数列的第______项.

  (2)已知 中,首项 , 则公差

  (3)已知 中,公差 , 则首项

  这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.

  2.基本量方法的使用

  (1)已知 中, ,求 的值.

  (2)已知 中, , 求 .

  若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些是确定的,由 和 写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于 和 的二元方程组,以求得 和 , 和 称作基本量.

  教师提出新的问题,已知的一个条件(等式),能否确定一个?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).

  如:已知 中, …

  由条件可得 即 ,可知 ,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题

  (3)已知 中, 求 ; ; ; ;….

  类似的还有

  (4)已知 中, 求 的值.

  以上属于对数列的项进行定量的研究,有无定性的判断?引出

  3.研究的单调性

  ,考察 随项数 的变化规律.着重考虑 的情况. 此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.

  4.研究项的符号

  这是为研究前 项和的最值所做的准备工作.可配备的题目如

  (1)已知数列 的通项公式为 ,问数列从第几项开始小于0?

  (2) 从第________项起以后每项均为负数.

  三.小结

  1. 用方程思想认识通项公式;

  2. 用函数思想解决问题.

  四.板书设计 

  通项公式  1. 方程思想的运用

  2. 基本量方法的使用

  3. 研究的单调性

  4. 研究项的符号

3.1 等差数列 篇6

  教材:(二)目的:通过例题的讲解,要求学生进一步认清等差数列的有关性质意义,并且能够用定义与通项公式来判断一个数列是否成等差数列。过程:一、复习:等差数列的定义,通项公式    二、例一    在等差数列 中, 为公差,若 且 求证:1°     2°         证明:1°  设首项为 ,则∵   ∴ 2∵   ∴ 注意:由此可以证明一个定理:设成等差数列,则与首末两项距离相等的两项和等于首末两项的和 ,即:                    同样:若  则        例二  在等差数列 中,                 1° 若     求                 解:  即    ∴                2° 若  求           解: =                3° 若     求            解:   即    ∴                   从而                4° 若     求           解:∵ 6+6=11+1      7+7=12+2   ……                  ∴        ……                 从而 + 2                   ∴ =2 -                                                     =2×80-30=130  三、判断一个数列是否成等差数列的常用方法      1.定义法:即证明            已知数列 的前 项和 ,求证数列 成等差数列,并求其首项、公差、通项公式。                  解:                             当 时                           时 亦满足  ∴               首项                     ∴ 成等差数列且公差为6     2.中项法: 即利用中项公式,若  则 成等差数列。          已知 , , 成等差数列,求证 , , 也成ap。         证明: ∵ , , 成ap      ∴  化简得:                                                                                                                =                            ∴ , , 也成等差数列。         3.通项公式法:利用等差数列得通项公式是关于 的一次函数这一性质。            例五  设数列 其前 项和 ,问这个数列成ap吗?解: 时        时                   ∵    ∴                       ∴ 数列 不成ap   但从第2项起成等差数列。   四、小结: 略   五、作业:

3.1 等差数列 篇7

  教学目标                        1.明确等差中的概念.     2.进一步熟练掌握等差数列的通项公式及推导公式     3.培养学生的应用意识.     教学重点                    等差数列的性质的理解及应用     教学难点                    灵活应用等差数列的定义及性质解决一些相关问题     教学方法                        讲练相结合     教具准备                        投影片2张(内容见下面) 教学过程                        (i)复习回顾 师:首先回忆一下上节课所学主要内容: 1.  等差数列定义: (n≥2) 2.  等差数列通项公式: (n≥2) 推导公式: ()讲授新课 师:先来看这样两个例题(放投影片1) 例1:在等差数列 中,已知 , ,求首项 与公差 例2:梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度。1.  解:由题意可知 解之得 即这个数列的首项是-2,公差是3。 或由题意可得: 即:31=10+7d 可求得d=3,再由 求得1=-2 2.  解设 表示梯子自上而上各级宽度所成的等差数列,由已知条件,可知: a1=33,  a12=110,n=12 ∴ ,即时10=33+11 解之得: 因此, 答:梯子中间各级的宽度从上到下依次是40cm,47cm,54cm,61cm,68cm,75cm,82cm,89cm,96cm,103cm. 师:[提问]如果在 与 中间插入一个数a,使 ,a, 成等差数列数列,那么a应满足什么条件? 生:由定义得a- = -a 即: 反之,若 ,则a- = -a 师:由此可可得: 成等差数列,若 ,a, 成等差数列,那么a叫做 与 的等差中项。 不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。 如数列:1,3,5,7,9,11,13…中 5是否和风细雨的等差中项,1和9的等差中项。 9是7和11的等差中项,5和13的等差中项。 看来, 从而可得在一等差数列中,若m+n=p+q 则, 生:结合例子,熟练掌握此性质 师:再来看例3。(放投影片2) 生:思考例题 例3:已知数列的通项公式为: 分析:由等差数列的定义,要判定 是不是等差数列,只要看 (n≥2)是不是一个与n无关的常数。 解:取数列 中的任意相邻两项 与 (n≥2), 则: 它是一个与n无关的常数,所以 是等差数列。在 中令n=1,得: ,所以这个等差数列的首项是p=q,公差是p.看来,等差数列的通项公式可以表示为: ,其中 、 是常数。 ()课堂练习 生:(口答) (书面练习) 师:给出答案 生:自评练习 ()课时小结 师:本节主要概念:等差中项 另外,注意灵活应用等差数列定义及通项公式解决相关问题。 ()课后作业 一、课本 二、1.预习内容     2.预习提纲:①等差数列的前n项和公式; ②等差数列前n项和的简单应用。 教学后记                 

3.1 等差数列 篇8

  教材:(一)目的:要求学生掌握等差数列的意义,通项公式及等差中项的有关概念、计算公式,并能用来解决有关问题。过程:

  一、引导观察数列:4,5,6,7,8,9,10,……                         3,0,-3,-6,……                     , , , ,……                        12,9,6,3,……       特点:从第二项起,每一项与它的前一项的差是常数 ― “等差”

  二、得出等差数列的定义:        注意:从第二项起,后一项减去前一项的差等于同一个常数。1.名称:   首项   公差 2.若   则该数列为常数列3.寻求等差数列的通项公式:                    由此归纳为     当 时  (成立)       注意:  1° 等差数列的通项公式是关于 的一次函数              2° 如果通项公式是关于 的一次函数,则该数列成ap          证明:若                 它是以 为首项, 为公差的ap。              3° 公式中若  则数列递增,  则数列递减  4° 图象: 一条直线上的一群孤立点三、例题: 注意在 中 , , , 四数中已知三个可以求           出另一个。例一 (见教材)例二 (见教材)

  四、关于等差中项: 如果 成等差数列则       证明:设公差为 ,则               ∴    例四  《教学与测试》p77 例一:在-1与7之间顺次插入三个数 使这五个数成ap,求此数列。五、小结:等差数列的定义、通项公式、等差中项六、作业:           

3.1 等差数列 篇9

  以下是初中数学《等差数列》的说课稿范文,仅供参考。希望大家喜欢!

  《等差数列》说课稿

  各位评委老师好,我是4号考生,我今天说课的题目是《等差数列》,我从教材分析,学情教法分析,学法分析,教学过程四方面对本节课的内容加以说明。

  一、教材分析

  1、教材的地位和作用:

  《等差数列》是人教版新课标教材《数学》必修5第二章第二节的内容。数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

  2、教学目标

  根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标

  a知识与技能:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

  b.过程与方法:在教学过程中我采用讨论式、启发式的方法使学生深刻的理解不完全归纳法。

  c.情感态度与价值观:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

  3、教学重点和难点

  重点:①等差数列的概念。

  ②等差数列的通项公式的推导过程及应用。

  难点:①等差数列的通项公式的推导

  ②用数学思想解决实际问题

  二、学情教法分析:

  对于高一学生,知识经验已较为丰富,具备了一定的抽象思维能力和演绎推理能力,所以我本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。学生在初中时只是简单的接触过等差数列,具体的公式还不会用,因些在公式应用上加强学生的理解

  三、学法分析:

  在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

  四、教学过程

  1.创设情景 提出问题

  首先要学生回忆数列的有关概念,数列的两种方法——通项公式和递推公式

3.1 等差数列 篇10

  一、教材分析

  1、教学目标:

  A.理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;

  B.培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

  C 通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

  2、教学重点和难点

  ①等差数列的概念。

  ②等差数列的通项公式的推导过程及应用。用不完全归纳法推导等差数列的通项公式。

  二、教法分析

  采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

  三、教学程序

  本节课的教学过程由(一)复习引入(二)新课探究(三)应用例解(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

  (一)复习引入:

  1.全国统一鞋号中成年女鞋的各种尺码(表示鞋底长,单位是c)分别是

  21,22,23,24,25,

  2.某剧场前10排的座位数分别是:

  38,40,42,44,46,48,50,52,54,56。

  3.某长跑运动员7天里每天的训练量(单位:)是:

  7500,8000,8500,9000,9500,10000,10500。

  共同特点:

  从第2项起,每一项与前一项的差都等于同一个常数。

  (二) 新课探究

  1、给出等差数列的概念:

  如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:

  ① “从第二项起”满足条件;

  ②公差d一定是由后项减前项所得;

  ③公差可以是正数、负数,也可以是0。

  2、推导等差数列的通项公式

  若等差数列{an }的首项是 ,公差是d, 则据其定义可得:

  - =d 即: = +d

   =d 即: = +d = +2d

   =d 即: = +d = +3d

  进而归纳出等差数列的通项公式:

  = +(n-1)d

  此时指出:

  这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:

   =d

   =d

   =d

   =d

  将这(n-1)个等式左右两边分别相加,就可以得到 = (n-1) d即 = +(n-1) d

  当n=1时,上面等式两边均为 ,即等式也是成立的,这表明当n∈ 时上面公式都成立,因此它就是等差数列{an }的通项公式。

  接着举例说明:若一个等差数列{ }的首项是1,公差是2,得出这个数列的通项公式是: =1+(n-1)×2 , 即 =2n-1 以此来巩固等差数列通项公式运用

  (三)应用举例

  这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的 、d、n、 这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。

  例1 (1)求等差数列8,5,2,…的第20项;

  (2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?

  第二问实际上是求正整数解的问题,而关键是求出数列的通项公式

  例2 在等差数列{an}中,已知 =10, =31,求首项 与公差d。

  在前面例1的基础上将例2当作练习作为对通项公式的巩固

  例3 梯子的最高一级宽33c,最低一级宽110c,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。

  (四)反馈练习

  1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。

  2、若数列{ } 是等差数列,若 = ,(为常数)试证明:数列{ }是等差数列

  此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。

  (五)归纳小结 (由学生总结这节课的收获)

  1.等差数列的概念及数学表达式.

  强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数

  2.等差数列的通项公式 = +(n-1) d会知三求一

  (六) 布置作业

  必做题:课本P114 习题3.2第2,6 题

  选做题:已知等差数列{ }的首项 = -24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)

  四、板书设计

  在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。

3.1 等差数列 篇11

  一、下面先说说教材

  1、教材的地位和作用

  中职数学是中等职业学校各类专业学生必修的主要文化基础课,学好这门课程对提高学生数学素养具有十分重要的意义。数列这一章是中职数学的重要内容之一。它不仅是函数知识的延伸,而且还有着非常广泛的实际应用;同时数列还是培养学生数学思维能力的良好题材。

  《等差数列的前n项和》是本章的第二节,它为后继学习提供了知识基础,对提高学生分析、猜想、概括、归纳的能力有着重要的作用。

  《等差数列》作为《数列》这一章中两个最重要的数列之一,具有承上启下的作用,它的研究和解决集中体现了研究《数列》问题的思想和方法。学习《等差数列的前n项和》对提高学生分析、猜想、概括、归纳的能力有着重要的作用。

  2、教学目标根据教学大纲的要求和教学内容的结构特征,并结合学生学习的实际情况,我将本节课的教学目标确定为以下三个方面

  知识目标:掌握等差数列的前n项和公式

  能力目标:1、培养学生观察、归纳、类比、联想等发现规律的一般方法。

  2、提高学生分析问题和解决问题的能力

  情感目标:1、培养学生主动探索的精神和良好的学习习惯

  2、让学生在问题中感受学习的乐趣;

  3、教学重点和难点。根据本节课的内容以及学生已掌握的知识情况我将

  教学重点确定为:等差数列的前n项和公式及应用

  教学难点确定为:应用等差数列解决有关问题

  二、说教法学法

  教法教学有法但教无定法,教学方法要与学生学习的实际情况相结合。

  中职学生的生源质量逐年下降,大部分中职生基础薄弱、理解接受能力较差,大多数学生不爱学习,不会学习。学生认为数学难,枯燥理解不了。对数学学习提不起兴趣,因此在教学中我注重激发学生学习的兴趣。本节课通过具体的实例引入,采用了问题、类比、发现、归纳的探究式教学方法。引导学生积极主动的去学习。在课堂教学中强调以学生为主体,注重精讲多练。同时也注重学生非智力因素的培养,增强学生的自信心和成就感。为学习营造宽松和谐的氛围。另外在教学中使用多媒体教学手段等,提高教学质量和教学效果。

  学法我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。倡导学生主动参与、乐于探究,培养学生发现问题、分析问题和解决问题的能力。根据学生的认知水平,我设计了:

  ①创设情境―引入问题

  ②分析归纳―解决问题

  ③例题研究―运用新知

  ④分组训练―巩固新知

  ⑤总结归纳―提高认识

  ⑥课后作业―自主探究

  六个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目标。

  接下来,我再具体谈一谈这堂课的教学过程。

  三、说教学过程

  (一)创设情境――引入问题教学设想

  我经常在想:长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中一个重要因素就是数学离学生的生活实际太远了。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

  由生活中的实例一招聘信息引入:A公司月薪20__元;B公司第一个月800元,以后逐月递加200元。你愿意到哪家公司上班?为什么?在A、B公司一年各共领多少钱?五年呢?以此来激发学生的学习兴趣。再给学生讲数学家高斯的故事

  1+2+3+…+100=

  同学们,如果你是小高斯,你会怎么向老师解释算法呢?

  (二)分析归纳――解决问题教学设想

  由高斯的解题过程:

  S= 1+2+3+…+100

  S= 100+99+98+…+1

  2S=(100+1)×100

  S=(100+1)100/2=5050

  让学生在在教师的启发引导下,由被动地听讲变为主动参与,敢于发表自己独特的见解,并学会倾听、尊重他人的意见。教师引导学生概括总结出本课新的知识点。

  1、等差数列前n项求和公式

  类似m+n=s+t am+an=as+at m,n,s,t∈N+

  等差求和

  倒排相加

  另有

  即(2)――类似梯形面积公式便于记忆

  进而让学生解决课前提出的问题

  一年在A公司12×20__

  在B公司

  800+900+1000+…1900

  五年在A公司20__×12×5

  在B公司

  800+900+1000+…+6700

  ――让学生利用刚学的知识解决当前的问题,让学生明白学以致用。

  (三)例题研究――运用新知教学设想

  通过例题,使学生加深对知识的理解,从而达到掌握、运用知识的效果

  例1、(1)求正奇数前100项之和;

  (2)求第101个正奇数到第150个正奇数之和;

  (3)等差数列的通项公式为an=100-3n,求其前65项之和;

  (4)在等差数列{an}中,已知a1=3,,求S10

  例2、某长跑运动员7天每天的训练量(单位:m)分别是7500,8000,8500,9000,9500,10000,10500,他在7天内共跑了多少米?

  例3、设等差数列{an}的公差d=,前n项之和Sn=。求a1及n

  课堂上让学生用两种公式解题,有利于提高思维的灵活性,通过板演调动学生的积极性,也掌握本节课的重点和难点。

  (四)分组训练―巩固新知

  教学设想,例题过后,我特地设计了一组检测题,

  1、等差数列求和公式Sn=

  2、等差数列{an}中,(1)a1=2,d=-1则Sn=

  3、2c+4c+6c+…+2nc=

  4、一堆圆木,每层总比上一层多一根,顶层4根,最底层21根,这堆木料有多少根?

  5、一只挂钟,遇整点就敲响,钟响的次数是该点的时间数,从1点到12点共响几次?

  通过游戏比赛的形式,活跃课堂气氛,提高学生的学习兴趣。来巩固新知识。

  (五)总结归纳――提高认识教学设想

  让学生通过所学内容的小结,对知识的发生发展有一个清晰的线索,把课堂所学知识构建起新的知识体系。同时养成良好的学习习惯。

  (六)课后作业自主探究

  教学设想

  学生经过以上五个环节的学习,已经初步掌握了等差数列的前n项的求和,并解决了一些实际问题。

  根据学生在课堂上知识掌握的情况有针对性布置课后作业。提高学生应用知识的能力。

  四、说板书设计

  我将这节课的板书设计为三列,一列为本节课的基本知识点,一列为例题,一列为讲解。条理清晰,一目了然。我认为板书设计在课堂教学中也很重要,好的板书就是一份微型教案,向学生展现了所学知识的框架,突出重点难点,清晰直观地将授课内容传递给学生,便于学生理解掌握。

  五、说教学反思

  根据课堂教学情况,课后及时总结,不断改进,精益求精,努力提高课堂教学效果。

  结束:以上是我说课的内容,不当之处希望各位评委老师提出宝贵意见。

3.1 等差数列 篇12

  本节课是《普通高中课程标准实验教科书・数学5》(北师大版)第一章数列第二节等差数列第一课时.数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用.等差数列是在学生学习了数列的有关概念和给出数列的两种方法――通项公式和递推公式的基础上,对数列的知识进一步深入和拓广.同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法.

  【教学目标】

  1. 知识与技能

  (1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:

  (2)账务等差数列的通项公式及其推导过程:

  (3)会应用等差数列通项公式解决简单问题。

  2.过程与方法

  在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

  3.情感、态度与价值观

  通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

  【教学重点】

  ①等差数列的概念;②等差数列的通项公式

  【教学难点】

  ①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.

  【学情分析】

  我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.

  【设计思路】

  1.教法

  ①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.

  ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.

  ③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.

  2.学法

  引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.

  【教学过程】

  一:创设情境,引入新课

  1.从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?

  2.水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?

  3.我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?

  教师:以上三个问题中的数蕴涵着三列数.

  学生:

  1:0,5,10,15,20,25,….

  2:18,15.5,13,10.5,8,5.5.

  3:10072,10144,10216,10288,10360.

  (设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.

  二:观察归纳,形成定义

  ①0,5,10,15,20,25,….

  ②18,15.5,13,10.5,8,5.5.

  ③10072,10144,10216,10288,10360.

  思考1上述数列有什么共同特点?

  思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?

  思考3你能将上述的文字语言转换成数学符号语言吗?

  教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.

  学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.

  教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.

  (设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)

  三:举一反三,巩固定义

  1.判定下列数列是否为等差数列?若是,指出公差d.

  (1)1,1,1,1,1;

  (2)1,0,1,0,1;

  (3)2,1,0,-1,-2;

  (4)4,7,10,13,16.

  教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.

  注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 .

  (设计意图:强化学生对等差数列“等差”特征的理解和应用).

  2思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?

  (设计意图:强化等差数列的证明定义法)

  四:利用定义,导出通项

  1.已知等差数列:8,5,2,…,求第200项?

  2.已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?

  教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.

  (设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)

  五:应用通项,解决问题

  1判断100是不是等差数列2, 9,16,…的项?如果是,是第几项?

  2在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.

  3求等差数列 3,7,11,…的第4项和第10项

  教师:给出问题,让学生自己操练,教师巡视学生答题情况.

  学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式

  (设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)

  六:反馈练习:教材13页练习1

  七:归纳总结:

  1.一个定义:

  等差数列的定义及定义表达式

  2.一个公式:

  等差数列的通项公式

  3.二个应用:

  定义和通项公式的应用

  教师:让学生思考整理,找几个代表发言,最后教师给出补充

  (设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)

  【设计反思】

  本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.

3.1 等差数列 篇13

  【教学目标】

  1.知识与技能

  (1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:

  (2)账务等差数列的通项公式及其推导过程:

  (3)会应用等差数列通项公式解决简单问题。

  2.过程与方法

  在定义的理解和通项公式的.推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

  3.情感、态度与价值观通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

  【教学重点】

  ①等差数列的概念;

  ②等差数列的通项公式

  【教学难点】

  ①理解等差数列“等差”的特点及通项公式的含义;

  ②等差数列的通项公式的推导过程.

  【学情分析】

  我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.

  【设计思路】

  1.教法

  ①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.

  ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.

  ③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.

  2.学法引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.

  【教学过程】

  一:创设情境,引入新课

  1.从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?

  2.水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?

  3.我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?

  教师:以上三个问题中的数蕴涵着三列数.

  学生:

  1:0,5,10,15,20,25,….

  2:18,15.5,13,10.5,8,5.5.

  3:10072,10144,10216,10288,10360.

  (设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.

  二:观察归纳,形成定义

  ①0,5,10,15,20,25,….

  ②18,15.5,13,10.5,8,5.5.

  ③10072,10144,10216,10288,10360.

  思考1上述数列有什么共同特点?

  思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?

  思考3你能将上述的文字语言转换成数学符号语言吗?

  教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.

  学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.

  教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.

  (设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)

  三:举一反三,巩固定义

  1.判定下列数列是否为等差数列?若是,指出公差d.

  (1)1,1,1,1,1;

  (2)1,0,1,0,1;

  (3)2,1,0,-1,-2;

  (4)4,7,10,13,16.

  教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.

  注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 .

  (设计意图:强化学生对等差数列“等差”特征的理解和应用).

  2.思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?

  (设计意图:强化等差数列的证明定义法)

  四:利用定义,导出通项

  1.已知等差数列:8,5,2,…,求第200项?

  2.已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?

  教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.

  (设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)

  五:应用通项,解决问题

  1判断100是不是等差数列2,9,16,…的项?如果是,是第几项?

  2在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.

  3求等差数列3,7,11,…的第4项和第10项

  教师:给出问题,让学生自己操练,教师巡视学生答题情况.

  学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式

  (设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)

  六:反馈练习:教材13页练习1

  七:归纳总结:

  1.一个定义:等差数列的定义及定义表达式

  2.一个公式:等差数列的通项公式

  3.二个应用:定义和通项公式的应用

  教师:让学生思考整理,找几个代表发言,最后教师给出补充

  (设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)

3.1 等差数列 篇14

  [教学目标]

  1.知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。

  2.过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。

  3.情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。

  [教学重难点]

  1.教学重点:等差数列的概念的理解,通项公式的推导及应用。

  2.教学难点:

  (1)对等差数列中“等差”两字的把握;

  (2)等差数列通项公式的推导。

  [教学过程]

  一.课题引入

  创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)

  二、新课探究

  (一)等差数列的定义

  1、等差数列的定义

  如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。

  (1)定义中的关健词有哪些?

  (2)公差d是哪两个数的差?

  (二)等差数列的通项公式

  探究1:等差数列的通项公式(求法一)

  如果等差数列首项是,公差是,那么这个等差数列如何表示?呢?

  根据等差数列的定义可得:

  因此等差数列的通项公式就是:,

  探究2:等差数列的通项公式(求法二)

  根据等差数列的定义可得:

  将以上-1个式子相加得等差数列的通项公式就是:,

  三、应用与探索

  例1、(1)求等差数列8,5,2,…,的第20项。

  (2)等差数列-5,-9,-13,…,的第几项是401?

  (2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得成立,实质上是要求方程的正整数解。

  例2、在等差数列中,已知=10,=31,求首项与公差d.

  解:由,得。

  在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。

  巩固练习

  1.等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a=。

  2.一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。

  四、小结

  1.等差数列的通项公式:

  公差;

  2.等差数列的计算问题,通常知道其中三个量就可以利用通项公式an=a1+(n-1)d,求余下的一个量;

  3.判断一个数列是否为等差数列只需看是否为常数即可;

  4.利用从特殊到一般的思维去发现数学系规律或解决数学问题.

  五、作业:

  1、必做题:课本第40页习题2.2第1,3,5题

  2、选做题:如何以最快的速度求:1+2+3++100=

3.1 等差数列 篇15

  教学目标  1.熟练运用等差、等比数列的概念、通项公式、前n项和式以及有关性质,分析和解决等差、等比数列的综合问题.  2.突出方程思想的应用,引导学生选择简捷合理的运算途径,提高运算速度和运算能力.3.用类比思想加深对等差数列与等比数列概念和性质的理解.教学重点与难点  1.用方程的观点认识等差、等比数列的基础知识,从本质上掌握公式.  2.等差数列与等比数列的综合应用.例1已知两个等差数列5,8,11,…和3,7,11…都有100项,问它们有多少公共项.例2 已知数列{an}的前n 项和 ,求数列{|an|}的前n项和tn.例3已知公差不为零的等差数列{an}和等比数例{bn}中,a1=b1=1,a2=b2,a8=b3,试问:是否存在常数a,b,使得对于一切自然数n,都有an=logabn+b成立.若存在,求出a,b的值,若不存在,请说明理由.  例4已知数列{an}是公差不为零的等差数列,数列{akn}是公比为q的等比数列,且k1=1,k2=5,k3=17,求k1+k2+k3+…+kn的值.  例5、 已知函数f(x)=2x-2-x ,数列{an}满足f( )= -2n (1)求{an}的通项公式。 (2)证明{an}是递减数列。 例6、在数列{an}中,an>0,  = an+1 (n n) 求sn和an的表达式。 例7.已知数列{an}的通项公式为an= .求证:对于任意的正整数n,均有a2n─1,a2n,a2n+1成等比数列,而a2n,a2n+1,a2n+2成等差数列。例8.项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项及项数。作业  1  公差不为零的等差数列的第2,第3,第6项依次成等比数列,则公比是(    ).  (a)1     (b)2       (c)3       (d)4  2  若等差数列{an}的首项为a1=1,等比数列{bn},把这两个数列对应项相加所得的新数列{an+bn}的前三项为3,12,33,则{an}的公差为{bn}的公比之和为(   ).  (a)-5     (b)7       (c)9       (d)14  3 已知等差数列{an}的公差d≠0,且a1,a3,a9成等比数列,则 的值是 .  4   在等差数列{an}中,a1,a4,a25依次成等比数列,且a1+a4+a25=114,求成等比数列的这三个数.  5  设数列{an}是首项为1的等差数列,数列{bn}是首项为1的等比数列,又cn=an-bn(n∈n+),已知 试求数列{cn}的通项公式与前n项和公式.

3.1 等差数列 篇16

  教学目标

  A、知识目标:

  掌握等差数列前n项和公式的推导方法;掌握公式的运用。

  B、能力目标:

  (1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。

  (2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

  (3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

  C、情感目标:(数学文化价值)

  (1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。

  (2)通过公式的运用,树立学生"大众教学"的思想意识。

  (3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。

  教学重点:等差数列前n项和的公式。

  教学难点:等差数列前n项和的公式的灵活运用。

  教学方法:启发、讨论、引导式。

  教具:现代教育多媒体技术。

  教学过程

  一、创设情景,导入新课。

  师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。(教师观察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。

  例1,计算:1+2+3+4+5+6+7+8+9+10.

  这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。

  生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到55。

  生2:可设S=1+2+3+4+5+6+7+8+9+10,根据加法交换律,又可写成  S=10+9+8+7+6+5+4+3+2+1。

  上面两式相加得2S=11+10+......+11=10×11=110

  10个

  所以我们得到S=55,

  即1+2+3+4+5+6+7+8+9+10=55

  师:高斯神速计算出1到100所有自然数的各的方法,和上述两位同学的方法相类似。

  理由是:1+100=2+99=3+98=......=50+51=101,有50个101,所以1+2+3+......+100=50×101=5050。请同学们想一下,上面的方法用到等差数列的哪一个性质呢?

  生3:数列{an}是等差数列,若m+n=p+q,则am+an=ap+aq.

  二、教授新课(尝试推导)

  师:如果已知等差数列的首项a1,项数为n,第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。

  生4:Sn=a1+a2+......an-1+an也可写成

  Sn=an+an-1+......a2+a1

  两式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1)

  n个

  =n(a1+an)

  所以Sn=(I)

  师:好!如果已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n-1)d代入公式(1)得

  Sn=na1+ d(II)

  上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?[an=a1+(n-1)d,Sn==na1+ d];这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。

  三、公式的应用(通过实例演练,形成技能)。

  1、直接代公式(让学生迅速熟悉公式,即用基本量观点认识公式)例2、计算:

  (1)1+2+3+......+n

  (2)1+3+5+......+(2n-1)

  (3)2+4+6+......+2n

  (4)1-2+3-4+5-6+......+(2n-1)-2n

  请同学们先完成(1)-(3),并请一位同学回答。

  生5:直接利用等差数列求和公式(I),得

  (1)1+2+3+......+n=

  (2)1+3+5+......+(2n-1)=

  (3)2+4+6+......+2n==n(n+1)

  师:第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答?小组讨论后,让学生发言解答。

  生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以

  原式=[1+3+5+......+(2n-1)]-(2+4+6+......+2n)

  =n2-n(n+1)=-n

  生7:上题虽然不是等差数列,但有一个规律,两项结合都为-1,故可得另一解法:

  原式=-1-1-......-1=-n

  n个

  师:很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法。注意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。

  例3、(1)数列{an}是公差d=-2的等差数列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。

  生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

  又∵d=-2,∴a1=6

  ∴S12=12 a1+66×(-2)=-60

  生9:(2)由a1+a2+a3=12,a1+d=4

  a8+a9+a10=75,a1+8d=25

  解得a1=1,d=3 ∴S10=10a1+=145

  师:通过上面例题我们掌握了等差数列前n项和的公式。在Sn公式有5个变量。已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二),请同学们根据例3自己编题,作为本节的课外练习题,以便下节课交流。

  师:(继续引导学生,将第(2)小题改编)

  ①数列{an}等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n

  ②若此题不求a1,d而只求S10时,是否一定非来求得a1,d不可呢?引导学生运用等差数列性质,用整体思想考虑求a1+a10的值。

  2、用整体观点认识Sn公式。

  例4,在等差数列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教师启发学生解)

  师:来看第(1)小题,写出的计算公式S16==8(a1+a6)与已知相比较,你发现了什么?

  生10:根据等差数列的性质,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。

  师:对!(简单小结)这个题目根据已知等式是不能直接求出a1,a16和d的,但由等差数列的性质可求a1与an的和,于是这个问题就得到解决。这是整体思想在解数学问题的体现。

  师:由于时间关系,我们对等差数列前n项和公式Sn的运用一一剖析,引导学生观察当d≠0时,Sn是n的二次函数,那么从二次(或一次)的函数的观点如何来认识Sn公式后,这留给同学们课外继续思考。

  最后请大家课外思考Sn公式(1)的逆命题:

  已知数列{an}的前n项和为Sn,若对于所有自然数n,都有Sn=。数列{an}是否为等差数列,并说明理由。

  四、小结与作业。

  师:接下来请同学们一起来小结本节课所讲的内容。

  生11:1、用倒序相加法推导等差数列前n项和公式。

  2、用所推导的两个公式解决有关例题,熟悉对Sn公式的运用。

  生12:1、运用Sn公式要注意此等差数列的项数n的值。

  2、具体用Sn公式时,要根据已知灵活选择公式(I)或(II),掌握知三求二的解题通法。

  3、当已知条件不足以求此项a1和公差d时,要认真观察,灵活应用等差数列的有关性质,看能否用整体思想的方法求a1+an的值。

  师:通过以上几例,说明在解题中灵活应用所学性质,要纠正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发现更多的性质,主动积极地去学习。

  本节所渗透的数学方法;观察、尝试、分析、归纳、类比、特定系数等。

  数学思想:类比思想、整体思想、方程思想、函数思想等。

  作业:P49:13、14、15、17

3.1 等差数列 篇17

  教学目的:1.掌握等差数列前n项和公式及其获取思路.  2.会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题           教学重点:等差数列n项和公式的理解、推导及应 教学难点:灵活应用等差数列前n项公式解决一些简单的有关问题 教学过程: 一、复习引入:首先回忆一下前几节课所学主要内容:1.等差数列的定义: - =d ,(n≥2,n∈n+) 2.等差数列的通项公式:  ( 或 =pn+q (p、q是常数)) 3.几种计算公差d的方法:① d= -     ② d=     ③ d=     4.等差中项: 成等差数列 5.等差数列的性质: m+n=p+q  (m, n, p, q ∈n )6.伟大的数学家,天文学家,高斯十岁时计算1+2+…100的小故事, 小高斯的计算方法启发我们下面要研究的求等差数列前n项和的一种很重要的思想方法,― “倒序相加”法。   二、讲解新课: 1.数列的前n项和的定义:数列 中, 称为数列 的前n项和,记为 .  2.等差数列的前 项和公式1: 证明:     ①         ②①+②:       ∵    ∴   由此得:                      1  3. 等差数列的前 项和公式2: 把   代入公式1即得:       24. 等差数列的前 项和公式的函数解析式特征:公式2又可化成式子: ,当d≠0,是一个常数项为零的二次式。 5.用方程思想理解等差数列的通项公式与前n项和公式:等差数列的通项公式与前n项和公式反映了等差数列的五个基本元素:a1,d,n,an,sn 之间的关系,从方程的角度看,它们可以构成两个独立方程(前n项和公式1、2是等价的),五元素中“知三求二”,解常规问题可以通过解方程或解方程组解决. 三、例题讲解 例1 某长跑运动员7天里每天的训练量(单位:m)是:

  7500

  8000

  8500

  9000

  9500

  10000

  1050

  这位运动员7天共跑了多少米?(课本p116例1) 例2 等差数列-10,-6,-2,2,…前多少项的和是54?(课本p116例2) 例3 求集合m={m|m=7n,n∈n*,且m<100}中元素的个数,并求这些元素的和. (课本p117例3) 例4 .已知等差数列{ }中 =13且 = ,那么n取何值时, 取最大值. 解法1:设公差为d,由 = 得: 3×13+3×2d/2=11×13+11×10d/2 d= -2,  =13-2(n-1),  =15-2n, 由 即 得:6.5≤n≤7.5,所以n=7时, 取最大值. 解法2:由解1得d= -2,又a1=13所以     = - n +14 n        = -(n-7) +49 ∴当n=7, 取最大值。 对等差数列前项和的最值问题有两种方法:(1) 利用 : 当 >0,d<0,前n项和有最大值。可由 ≥0,且 ≤0,求得n的值。 当 <0,d>0,前n项和有最小值。可由 ≤0,且 ≥0,求得n的值。 (2) 利用 : 由 利用二次函数配方法求得最值时n的值。 四、练习:        已知一个等差数列的前10项的和是310,前20项的和是1220,求其前 项和的公式.(课本p117 例4)  五、小结  本节课学习了以下内容:1.等差数列的前 项和公式1:  2.等差数列的前 项和公式2:  3. ,当d≠0,是一个常数项为零的二次式 4.对等差数列前项和的最值问题有两种方法:(3) 利用 : 当 >0,d<0,前n项和有最大值。可由 ≥0,且 ≤0,求得n的值。 当 <0,d>0,前n项和有最小值。可由 ≤0,且 ≥0,求得n的值。 (4) 利用 : 二次函数配方法求得最值时n的值。 六、作业:课本p118 习题3.3 1(2)、(4),2(2)、(4),6(2),7,8.

221381
领取福利

微信扫码领取福利

3.1 等差数列(精选17篇)

微信扫码分享