两圆的公切线(一)
教学目标:1、使学生理解两圆公切线等有关概念.2、使学生学会两圆外公切线的求法.3、通过对两圆公切线的直观演示的观察,培养学生能从直观演示中归纳出几何概念的能力;4、在指导学生学习求两圆外公切线长的过程中,培养学生的总结、归纳能力.教学重点: 使学生理解两圆公切线等有关概念,会求两圆的外公切线长.教学难点:两圆公切线和公切线长学生理解得不透,容易搞混.教学过程:一、新课引入:运转着的机器上主动轮和从动轮和传动带之间,很明显地给我们留下了一条直线和两个圆同时相切的形象,现在我们来研究和两圆都相切的直线.二、新课讲解:在直线和圆的位置关系中,切线非常重要,那么在两圆的位置关系中,尤其是与两个圆都相切的切线,应该具有什么特殊的性质呢?请同学打开练习本,画出所有可能的一条直线同时与两个圆相切的情形.学生动手画,教师巡视,当所有学生把认为可能的情形画完之后,教师打开计算机或幻灯作演示,演示过程中提醒学生观察,每一种圆与圆的位置关系是否都能作出符合条件的直线?两个圆与所作出的直线的位置如何?不同的位置能作出的直线的条数,哪一种圆与圆的位置关系中的符合条件的直线上存在线段?线段的端点是什么?最终教师指导学生定义两圆公切线及有关概念:1.定义:和两个圆都相切的直线,叫做两圆的公切线.2.分类:外公切线和内公切线.3.定义内外公切线.两个圆在公切线同旁时,公切线叫外公切线;两个圆在公切线两旁时,公切线叫内公切线.4.公切线长:公切线上两个切点的距离叫做公切线长.5.圆与圆各种位置的公切线及条数.两圆公切线的系列概念,主要是通过演示观察归纳获得.务必使每个学生都清楚,并不是每一种圆与圆的位置关系都存在公切线,两个圆若存在公切线,公切线的条数也因不同的位置关系而不相同.而两圆即使存在公切线,但不一定有切线长,教师可指导学生观察每一种位置关系的公切线,最终得到结论:只有两圆外离、外切、相交可求外公切线长,而两圆外离时又可求内公切线长.特别要使学生明白公切线和公切线长是两个不同的概念,因而意义也就不同,公切线是一条和两圆同时相切的直线,而公切线长是公切线上两个切点间的线段长,故可求之.怎样求两圆的外公切线长?可指导学生回顾切线长求法,是在一个由圆外一点到圆心的线段、半径、切线长为边的直角三角形中完成的.同样地,我们也考虑把公切线长的求出放置到一个直角三角形中去.这时可指导学生首先运用切线的性质,连结过切点的半径o1a、o2b于是得到直角梯形o1abo2,只要过o1作o1c⊥o2b,便得到矩形o1abc,于是ab=o1c,o1c可在rt△o1co2中求得.练习一,当两圆外离时,外公切线、圆心距、两半径之差一定组成 [ ]a.直角三角形 b.等腰三角形.c.等边三角形 d.以上答案都不对.此题考察外公切线与外公切线长之间的差别,答案(d)
共2页,当前第1页12