相交线(精选17篇)
相交线 篇1
万宁中学 李雄强 一、教学目标
1、经历观察、推理、交流等过程,进一步发展空间观念和推理能力;
2、了解邻补角和对顶角的概念,掌握邻补角、对顶角的性质;
3、培养学生解决实际问题的能力。
二、教学重点与难点
重点:对顶角相等的探索过程。
难点:学生推理能力和表达能力的培养。
三、教学准备
学生:三角尺、量角器。
教师:多媒体课件、剪刀。
四、教学设计(教学过程)
1、情景引入(多媒体投影汕头大桥的图片)
同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行线,桥的侧面有许多相交线段组成的图案,这些都给我们以相交线、平行线的形象。两条直线相交能形成哪些角?这些角又有什么特征?这就是我们今天这堂课要研究的内容:5.1.1相交线(板书)。
设计意图说明:通过学生熟悉的事物,直观形象地给出了生活中的平行线和相交线,激发了学生的学习兴趣。
2、探究新知
(1)教师动手操作:用剪刀剪开布片。在这个过程中握紧把手时,随着把手之间的角逐渐变小,剪刀刃之间的角也相应变小,直到剪开布片。如果把剪刀的构造看成两条相交的直线,这就关系到两条相交直线所成的角的问题。
(2)取两根木条a、b,将它们钉在一起,并把它们想像成两条直线,就得到一个相交线模型。如图1所示。在七年级上册中我们已经知道∠1与∠2的和等于180°,所以∠1与∠2互补,再仔细观察,这时的∠1与∠2有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角不仅互补,而且互为邻补角。
设计意图说明:用现实生活中的例子引出两条直线相交所成的角的问题,自然而贴切。
这样安排既可以复习七年级上册中互补的知识,又为学习本堂课的新知识做了铺垫。
3、谈论交流
(1)让学生讨论教科书中第4页的“讨论”。讨论时所给的表格可以逐步呈现,先结合两条直线相交的图形,找出其中所成的角,寻找各对角的位置关系。
(2)讨论不同的角的位置关系,得出对顶角的定义,并提醒学生注意:①是两条直线相交而得;②有一个公共顶点;③没有公共边,三个条件缺一不可。
(3)对顶角的大小有什么关系?讨论后得出对顶角的性质:对顶角相等。
设计意图说明:
教师放手让学生通过讨论解决问题,培养了学生的动手能力,提高了合作意识。
教师要鼓励学生运用自己的语言有条理的表达自己的观点,并说明理由。
“对顶角相等”这句话,学生很好理解,只是不知怎么阐述理由,教师可引导学生用“同角的补角相等”得出对顶角的性质。
4、初步应用
(1)教科书第5页的例题。
(2)练习(补充)
①下列说法正确的是( )
a、有公共顶点的两个角是对顶角
b、相等的两角是对顶角
c、有公共顶点并且相等的角是对顶角
d、两条直线相交成的四个角中,有公共顶点且没有公共边的两个角是对顶角
②已知∠1与∠2是对顶角,∠1与∠3互为补角,则∠2+∠3= 。
③如图2:直线a、b、c两两相交,∠1=60°,∠2=∠4,∠3= ,∠5= 。
设计意图说明:学生叙述,教师板书。补充练习的目的是为了使学生加深对知识的理解,参考答案:①d ②180° ③120°、90°
5、小结提高
可以采用师生问答的方式或先让学生归纳、补充,然后教师补充的方式进行,主要围绕下列问题:
(1)本节课我们学了什么知识?
(2)你有什么收获?
设计意图说明:发挥学生的主体意识,培养学生的归纳能力。
6、布置作业
(1)必做题:教科书第9页习题5.1第1、2、7题。
(2)选做题:
设计意图说明:学生可以根据自己的不同水平选择不同的作业。
① 如图3:直线ab与cd相交于点o,已知∠aoc+∠bod=90°,则∠boc= 。
② 已知两条直线相交而成的四个角,其中的一个角为50°,求其余三个角的度数。
③ 如图4:ab⊥cd于点o,直线ef过点o,若∠aoe=65°,求∠dof的度数。
选做题参考答案:①135° ②130°,50°,130° ③25°
(3)备选题:
① 如图5:oa⊥oc,ob⊥od,∠1=55°,求∠2,∠3的度数。
②两条直线交于一点,有几对对顶角?
三条直线交于一点,有几对对顶角?
四条直线交于一点,有几对对顶角?
x条直线交于一点,有几对对顶角?
备选题参考答案:①35°,35° ②2×1=2(对) 3×2=6(对)
4×3=2(对) x(x-1)=(x2-x)(对)
五、设计思想
本课设计旨在遵循从具体到抽象、从感性到理性的渐进认识规律,以启发探究式教学为主导,以学生熟悉的桥梁两端斜拉的平行线和侧面的相交线等实景引入课题,增加了学生的学习兴趣。
教师应发扬教学民主,成为学生数学活动的组织者、引导者和合作者。通过多媒体教学辅助手段,引导学生在活动中观察,启发学生用比较直观的语言来叙述邻补角和对顶角的概念,充分体现“数学教学主要是数学活动的教学”这一教育精神。
组织好小组合作学习,加强师生之间的互动,培养学生在独立思考问题的基础上,能够尊重与理解他人的意见,并培养与他人合作的能力
相交线 篇2
[学习目标]1. 通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力2. 在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题[学习重点与难点]重点:邻补角与对顶角的概念.对顶角性质与应用难点:理解对顶角相等的性质的探索
[学习设计]
一.创设情境 激发好奇 观察剪刀剪布的过程,引入两条相交直线所成的角 在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。观察剪刀剪布的过程,引入两条相交直线所成的角。学生观察、思考、回答问题教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,二.认识邻补角和对顶角,探索对顶角性质1.学生画直线ab、cd相交于点o,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类?学生思考并在小组内交流,全班交流。当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确表达;有公共的顶点o,而且 的两边分别是 两边的反向延长线2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)3学生根据观察和度量完成下表:两条直线相交所形成的角分类位置关系数量关系教师提问:如果改变 的大小,会改变它与其它角的位置关系和数量关系吗4.概括形成邻补角、对顶角概念和对顶角的性质三.初步应用练习:下列说法对不对(1) 邻补角可以看成是平角被过它顶点的一条射线分成的两个角(2) 邻补角是互补的两个角,互补的两个角是邻补角(3) 对顶角相等,相等的两个角是对顶角学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象四.巩固运用例题:如图,直线a,b相交, ,求 的度数。[巩固练习](教科书5页练习)已知,如图, ,求: 的度数 [小结]邻补角、对顶角. [作业]课本p9-1,2p10-7,8
5.1.2 垂线 [学习目标]1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。2.掌握点到直线的距离的概念,并会度量点到直线的距离。3.掌握垂线的性质,并会利用所学知识进行简单的推理。 [学习重点与难点]1.学习重点:垂线的定义及性质。 2.学习难点:垂线的画法。[学习过程设计]一. 复习提问:1、叙述邻补角及对顶角的定义。2、对顶角有怎样的性质。二.新课: 引言:前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。(一)垂线的定义 当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。 如图,直线ab、cd互相垂直,记作 ,垂足为o。 请同学举出日常生活中,两条直线互相垂直的实例。注意: 1、 如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。 2、掌握如下的推理过程:(如上图) 反之,(二)垂线的画法探究:1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?2、经过直线l上一点a画l的垂线,这样的垂线能画出几条?3、经过直线l外一点b画l的垂线,这样的垂线能画出几条?画法:让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。(三)垂线的性质经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:性质1 过一点有且只有一条直线与已知直线垂直。练习:教材第7页探究: 如图,连接直线l外一点p与直线l上各点o,a,b,c,……,其中 (我们称po为点p到直线l的垂线段)。比较线段po、pa、pb、pc……的长短,这些线段中,哪一条最短? 性质2 连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成: 垂线段最短。 (四)点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。如上图,po的长度叫做点 p到直线l的距离。例1 (1)ab与ac互相垂直;(2)ad与ac互相垂直;(3)点c到ab的垂线段是线段ab;(4)点a到bc的距离是线段ad;(5)线段ab的长度是点b到ac的距离;(6)线段ab是点b到ac的距离。其中正确的有( )a. 1个 b. 2个c. 3个 d. 4个解:a例2 如图,直线ab,cd相交于点o,解:略例3 如图,一辆汽车在直线形公路ab上由a向b行驶,m,n分别是位于公路两侧的村庄,设汽车行驶到点p位置时,距离村庄m最近,行驶到点q位置时,距离村庄n最近,请在图中公路ab上分别画出p,q两点位置。小结:1. 要掌握好垂线、垂线段、点到直线的距离这几个概念;2. 要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形;3. 垂线的性质为今后知识的学习奠定了基础,应该熟练掌握。作业:教材第9页5、6.
5.2.1 平行线 [学习目标]1.理解平行线的意义,了解同一平面内两条直线的位置关系;2.理解并掌握平行公理及其推论的内容;3.会根据几何语句画图,会用直尺和三角板画平行线;4.了解“三线八角”并能在具体图形中找出同位角、内错角与同旁内角;4.了解平行线在实际生活中的应用,能举例加以说明.[学习重点与难点]1.学习重点:平行线的概念与平行公理;2.学习难点:对平行公理的理解.[学习过程]一、复习提问相交线是如何定义的?二、新课引入平面内两条直线的位置关系除平行外,还有哪些呢?制作教具,通过演示,得出平面内两条直线的位置关系及平行线的概念.三、同一平面内两条直线的位置关系1.平行线概念:在同一平面内,不相交的两条直线叫做平行线.直线a与b平行,记作a∥b.(画出图形)2.同一平面内两条直线的位置关系有两种:(1)相交;(2)平行.3.对平行线概念的理解:两个关键:一是“在同一个平面内”(举例说明);二是“不相交”.一个前提:对两条直线而言.4.平行线的画法平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线).四、平行公理1.利用前面的教具,说明“过直线外一点有且只有一条直线与已知直线平行”.2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.提问垂线的性质,并进行比较.3.平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果b∥a,c∥a,那么b∥c.五、三线八角由前面的教具演示引出.如图,直线a,b被直线c所截,形成的8个角中,其中同位角有4对,内错角有2对,同旁内角有2对.七、小结让学生独立总结本节内容,叙述本节的概念和结论.八、课后作业1.教材p19第7题;2.画图说明在同一平面内三条直线的位置关系及交点情况.[补充内容]1.试说明,如果两条直线都和第三条直线平行,那么这两条直线也互相平行.2.在同一平面内,两条直线的位置关系仅有两种:相交或平行.但现实空间是立体的,试想一想在空间中,两条直线会有哪些位置关系呢?(用长方体来说明)
5.2.2直线平行的条件(一)3. 借助用直尺和三角板画平行线的过程,,得出直线平行的条件.4. 会用直线平行的条件来判定直线平行.5. 激发学生学习数学的兴趣.[学习重点与难点]重点: 理解直线平行的条件.难点: 直线平行的条件的应用.
[学习设计]提问复习题:1.如图,已知四条直线ab、ac、de、fg(1)∠1与∠2是直线_____和直线____被直线________所截而成的________角.(2) ∠3与∠2是直线_____和直线____被直线________所截而成的________角.(3) ∠5与∠6是直线_____和直线____被直线________所截而成的________角.(4) ∠4与∠7是直线_____和直线____被直线________所截而成的________角.(5) ∠8与∠2是直线_____和直线____被直线________所截而成的________角.2.下面说法中正确的是 ( ).(1) 在同一平面内,两条直线的位置关系有相交、平行、垂直三种 (2) 在同一平面内, 不垂直的两条直线必平行(3) 在同一平面内, 不平行的两条直线必垂直 (4) 在同一平面内,不相交的两条直线一定不垂直3.如果 a∥ b ,b ∥c ,那么_______,理由是_____________________.导言: 上节课我们学习了平行线的意义, 在同一平面内,两条直线的位置关系,以及平行公理,在此基础上,我们再来研究直线平行的条件.新课:直线平行的条件演示用直尺和三角板画平行线的过程,三种方法可以简单地说成: 例题 已知:如图,直线ab ,cd,ef被mn所截, ∠1=∠2, ∠3+∠1=180°,试说明cd ∥ef.解:因为∠1=∠2,所以 ab ∥cd.又因为 ∠3+∠1=180°,所以 ab ∥ ef.从而 cd ∥ef (为什么?).4.如图所示:(1)如果已知∠1=∠3,则可判定ab∥______,其理由是__________________;(2)如果已知∠4+∠5=180°,则可判定___________∥______,其理由是__________________;(3)如果已知∠1+∠2=180°,则可判定___________∥______,其理由是__________________;(4)如果已知∠5+∠2=180°那么根据对顶角相等有∠2=__,因此可知∠4+∠5= ____,所以可确定 ___________∥______,其理由是__________________;(5)如果已知∠1=∠6,则可判定_____∥______,其理由是__________________. 第4题图 第5题图5.如图,(1)如果∠1=________,那么de∥ ac;(2) 如果∠1=________,那么ef∥ bc;(3)如果∠fed+ ∠________=180°,那么ac∥ed;(4) 如果∠2+ ∠________=180°,那么ab∥df.
相交线 篇3
[教学目标]
通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力
在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题
[教学重点与难点]
重点:邻补角与对顶角的概念.对顶角性质与应用
难点:理解对顶角相等的性质的探索
[教学设计]
一.创设情境 激发好奇 观察剪刀剪布的过程,引入两条相交直线所成的角
在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。
观察剪刀剪布的过程,引入两条相交直线所成的角。
学生观察、思考、回答问题
教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?
教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,
二.认识邻补角和对顶角,探索对顶角性质
1.学生画直线ab、cd相交于点o,并说出图中4个角,两两相配
共能组成几对角?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流。
当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用
几何语言准确表达
;
有公共的顶点o,而且 的两边分别是 两边的反向延长线
2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?
(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)
3学生根据观察和度量完成下表:
两条直线相交 所形成的角 分类 位置关系 数量关系
教师提问:如果改变 的大小,会改变它与其它角的位置关系和数量关系吗?
4.概括形成邻补角、对顶角概念和对顶角的性质
三.初步应用
练习:
下列说法对不对
邻补角可以看成是平角被过它顶点的一条射线分成的两个角
邻补角是互补的两个角,互补的两个角是邻补角
对顶角相等,相等的两个角是对顶角
学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象
四.巩固运用例题:如图,直线a,b相交, ,求 的度数。
[巩固练习](教科书5页练习)已知,如图, ,求: 的度数
[小结]
邻补角、对顶角.
[作业]课本p9-1,2p10-7,8
[备选题]
一判断题:
如果两个角有公共顶点和一条公共过,而且这两个角互为补角,那么它们互为邻补角( )
两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补( )
二填空题
1如图,直线ab、cd、ef相交于点o, 的对顶角是 , 的邻补角是
若 : =2:3, ,则 =
2如图,直线ab、cd相交于点o
则
相交线 篇4
课题
5.1课型新授
教学目的
知识与技能:在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题.过程与方法:通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念. 情感态度与价值观:培养识图能力、推理能力和有条理表达能力.毛
重点
邻补角、对顶角的概念,对顶角性质与应用.
难点
理解对顶角相等的性质的探索.
媒体
多媒体课件教法引导发现法 教 学 过 程教 师 活 动学 生 活 动(一) 创设情境 复习导入 教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.(二) 尝试活动 探索新知 教师出示一块布片和一把剪刀,表演剪刀剪布过程,提出问题:剪布时,用力握紧把手,引发了什么变化?进而使什么也发生了变化?教师点评:如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及其特征.教师概括形成邻补角、对顶角概念.(三) 尝试反馈 理解新知 练习:下列说法,你同意吗?如果错误,如何订正.学生欣赏图片,阅读其中的文字.能与教师共同总结本节课所要学习的知识并能主动的进入本节课的学习. 学生观察、思想、回答,得出: 握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.学生画直线ab、cd相交于点o,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流.
教 学 过 程
例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.
(四) 总结拓展 教师引导学生进行本节课的小结并强调对顶角概念与对顶角性质不能混淆: 对顶角的概念是确定二角的位置关系,对顶角性质是确定为对顶角的两角的数量关系. (五) 布置作业 习题5.1第1,2题.让学生辨让未知角与已知角的关系,用指出通过什么途径去求这些未知角的度数的,然后板书出规范的求解过程.学生能由教师的引导总结归纳本节课都学会了哪些知识点?还有哪些没有解决的问题的等等并能提出相应的解决措施。
板 书 设 计
5.1.1相交线 邻补角:___________________________________ ___________________________________ ___________________________________ 对顶角:___________________________________ ___________________________________ ___________________________________引入资料及出处
教 后 记
本节课的教学效果较好,通过本节课的学习大部分学生能积极主动的参与到学习活动中来,并能积极主动的提出各类问题解决问题,但是个别同学的学习方法要加以指导,个别学生的学习态度要加强教育。组 长教 导 处
相交线 篇5
相交线――说课稿
尊敬的各位评委各位老师上午好:
我今天说课的题目是《相交线》,我将按照以下五个方面来进行:
一:教材分析
1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时
2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学习平面直角坐标系奠定基石,因此本节课具有承前启后的重要作用
3、教学的重点、难点:
重点:邻补角、对顶角的概念,对顶角的性质和应用。
难点:理解对顶角性质的探索
(确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。)
4、教学目标:
A:知识与技能目标
(1).理解对顶角和邻补角的概念,能在图形中辨认.
(2).掌握对顶角相等的性质和它的推证过程
(3).会用对顶角的性质进行有关的简单推理和计算.
B:过程与方法目标
(1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。
(2).体会具体到抽象再到具体的思想方法.
C:情感、态度与价值目标
(1).感受图形中和谐美、对称美.
(2).感受合作交流带来的成功感,树立自信心.
(3).感受数学应用的广泛性,使学生更加热爱数学
二、学情分析:
在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.
三、教法和学法:
教法:
叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学 相结合的方法.
学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.
四、教学过程:
1课前准备:课件,剪刀,纸片,相交线模型
2教学过程:设置以下六个环节
环节一:情景屋(创设情景,激发学习动机)
请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线
环节二:问题苑(合作交流,解释发现)
通过一些问题的设置,激发学生探究的欲望,具体操作:
(1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化
(2):给出问题,由剪刀这个实物抽象出几何模型――两条直线相交。
(让学生充分的感知到数学来源于生活,符合初中学生的认识规律和兴趣爱好)
(3):分析研究此模型:
设置以下一系列问题:A、两直线相交构成的4个角两两相配共能组成几对?(6对)
B、对各对角进行分析,首先从位置上去分析――――结论:可把这六对角分成两大类,一类为哪些角?――特点?――它们有一条公共边,它们的另一边互为反向延长线――引出概念――邻补角。
另一类是哪些角?―――特点?――它们的两边互为反向延长线――引出概念――对顶角
C、再从大小上进行分析――量一量――结论:邻补角互补、对顶角相等。
D、你能阐述它们互补和相等的理由吗?
(一堂好课,是由一系列的真问题组成的,本环节在老师的引导下,由学生自由的发挥,通过观察分析,交流 讨论一步一步的解决本节课的重点和难点,学生通过自己探索获得的知识才是自己的知识,让学生在此过程中学会学习,达到教是为了不教的目的)
环节三:快乐房(大胆创设,感悟变换)
(设置见投影,让学生判断形成的两个角是否为邻补角,这一变换让学生充满兴趣,此时一定让学生用邻补角的特点去检验,达到知识的正向迁移,并理解邻补角和补角的关系)
环节四:实例库(拓展应用,升华提高)
例子1:是一组不同形式的角,判断是否为对顶角,此题的目的是巩固对顶角的概念,培养学生的识图能力
例子2:例子2是用对顶角和邻补角的性质进行简单的计算,在这里设置了一组变式题,而且变式题目不是教师直接给出,而是启发学生自己编,让学生过了一把编导的瘾,学生一定非常的开心,这样可以活跃课堂气氛,提高学生的思维能力
(一方面巩固了对顶角的性质;另一方面说明几何里的计算题,需要用到图形的几何性质,因此,要有根有据地计算.例题放手让学生自己解决,比教师单纯地讲解效果会更好.尽管学生书写格式不如课本上的规范,但通过集体讲评纠正后,学生印象会更深刻).
最后安排一个脑筋急转弯:见投影
(让学生始终对课堂充满热情,通过此练习,体会到数学来自于生活又用于生活,提高学习数学的兴趣和热情)
环节五:点金帚(学后反思 感悟收获)
通过本堂课的探究
我经历了......
我体会到......
我感受到......
(学生畅所欲言,在“以生为本”的民主氛围中培养学生归纳、概括能力和语言表达能力;同时引导学生反思探究过程,帮助学生肯定自我,欣赏他人,同时把本节课的内容形成知识体系.)
角的名称
特征
性质
相同点
不同点
对顶角
①两条直线相交而成的角
②有一个公共顶点
③没有公共边
对顶角相等
都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。
对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个角的对顶角有一个,而一个角的邻补角有两个
邻补角
①两条直线相交面成的角
②有一个公共顶点
③有一条公共边
邻补角互补
环节六:沉思阁(课后延伸 张扬个性)
此为课后作业:
(适当增加利用对顶角相等解决一些说理的题目,既让学生感受到对顶角相等这个性质在解题中的独特魅力,又为后续学习打下良好的基础.)
五、教学设计说明:
设计理念:面向全体学生,实现:
――人人学有价值的数学
――人人都能获得必需的数学
――不同的人在数学上得到不同的发展
过程设计:学生亲身经历从现实生活的图形中提出数学问题,并抽象其蕴涵的数学本质(相交直线),最后回归生活去运用所学知识的全过程。
设计目的:让学生带着兴趣、带着问题走进课堂,带着新的问题、带着高涨的热情离开课堂,进行不断的探究。
相交线 篇6
教学建议
1.知识结构
2.重点和难点分析
(1)本节课的重点是对顶角的概念和性质,这些是重要的基础知识,在以后的学习中常常要用到,要求学生掌握.对顶角的概念是结合图形描述的,这样描述,便于学生在图形中辨认.教学中不必让学生背这些词句,而是让学生抓住概念的本质,教给学生在图形中如何辨认它们.辨认对顶角的要领是:首先要有两条直线相交构成四个角的前提条件,再找其中有公共顶点没有公共边(或不相邻)的两个角,就是对顶角.
(2)本节课的难点是对顶角性质的证明和书写格式.要证明两角相等,这对于刚学习推理证明的学生来说并非易事.教学时要引导学生回忆至今为止已经学过的关于两个角相等的定理,使学生自己联想到“同角的补角相等”这个定理,从而受到启发获得证明的思路.可先结合图形用文字语言叙述推理过程,然后再“翻译”成符号语言的几何推理格式.要特别注意使学生明确每一步推理的根据.
3.教法建议
(1)因为本节是由相交线的模型――用钉子固定的两根木条来引入的.所以教师要事先准备好教具,先让学生观察模型,对相交线建立感性认识,然后在从模型抽象出两条相交直线.或用我们提供的课件来引入本节课,激发学生的学习兴趣.
(2)教师讲完了对顶角的定义后,可以用以下方法让学生感受对顶角的特征,探索其性质.老师拿出提前准备好的剪刀,在讲台上演示.老师不停地变换剪刀的边所成的角,让学生思考,在剪刀的边所在的角中,哪些角是对顶角,哪些角是邻补角?让学生在变化中理解对顶角和邻补角的意义.
(3)本节课的内容适合启发式教学,教师可以先拿出相交线的模型,转动木条,观察角的变化,然后抽象出两条相交直线,再让学生观察四个角的特征,这四个角根据位置关系可以分几类,这两类角各有有什么特征?这些问题都要由老师设问、启发,学生经过观察、分析、归纳总结出来,让学生自己亲历一次发现的过程,有利于学生对对顶角、邻补角的概念和性质的理解.
教学设计示例
一、素质教育目标
(一)知识教学点
1.理解对顶角和邻补角的概念,能在图形中辨认.
2.掌握对顶角相等的性质和它的推证过程.
3.会用对顶角的性质进行有关的推理和计算.
(二)能力训练点
1.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.
2.通过对顶角件质的推理过程,培养学生的推理和逻辑思维能力.
(三)德育渗透点
从复杂图形分解为若干个基本图形的过程中,渗透化难为易的化归思想方法和方程思想.
(四)美育渗透点
通过实例,培养和提高学生的审美能力和审美标准;通过相交线,使学生进一步体会几何图形的简单美、对称美.
二、学法引导
1.教师教法:教具直观演示法启发引导、尝试研讨.
2.学生学法:动手动脑、积极参与、认真研讨、学会概括.
三、重点、难点及解决办法
(一)重点
(二)难点
在较复杂的图形中准确辨认对顶角和邻补角.
(三)疑点
对顶角、邻补角的图形识别.
(四)解决办法
强调图形的基本特征,指导学生逐步学会分解复杂图形、找出基本图形的方法.
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、三角尺、自制复合胶片、木条制成的相交直线的模型.
六、师生互动活动设计
1.通过实例创设情境,引导学生进入课题.
2.通过演示实验和学生讨论、总结对顶角、邻补角两个概念.
3.通过学生研讨、练习巩固完成性质的讲解.
4.通过学生总结完成课堂小结.
5.通过随堂练习,检测学生学习情况.
七、教学步骤
(一)明确目标
能在图形中正确辨认对顶角和邻补角,理解其概念,掌握其性质,并运用其进行推理计算.
(二)整体感知
通过对较复杂图形的认识和学习,逐步加深几何知识,培养学生逻辑思维能力和逻辑推理、表达能力.
(三)教学过程
创设情境,引入课题
投影打出本章的章前图(投影片1),然后引导学生观察,并回答问题.
学生活动:口答哪些道路是交错的,哪些道路是平行的.
教师导入 :图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.它们就是我们本章要研究的课题:
【板书】第二章 相交线、平行线
【教法说明】以立交桥为实例引出本章内容,目的是①通过实例,让学生了解相交线、平行线是我们日常生活中经常见到的;②通过画面,培养学生的空间想像能力;③通过画面,启发学生广泛地联想,让学生知道,相交线、平行线的概念是从实物中抽象出来的;④通过学生熟悉的事物,激发学生的学习兴趣.
学生活动:请学生举出现实空间里相交线、平行线的一些实例.
教师导入 :相交线、平行线在日常生活中经常见到,有着广泛应用,所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,从而引入本节课题.
【板制】2.1
探究新知,讲授新课
教师演示:取两根木条a、b,用钉子将它们钉在一起,并且能随意张开.固定水条a,绕钉子转动b,可以看到,b的位置变化了,a、b所成的角a也随着变化.这说明两条直线相交的不同位置情况,与它们的交角大小有关.可以用它们所成的角来说明相对位置的各种情况.所以研究两条直线相交问题首先来研究两条直线相交得到的有公共顶点的四个角.这四个角都有一个公共顶点,其中有些有公共边,有些没有公共边,故我们把这些角分成两类:对顶角和邻补角.
【教法说明】演示相交线的模型,目的是使学生领会研究相交线为什么要研究它们相交所成的角.
1.对顶角和邻补角的概念
学生活动:观察右图,同桌讨论if与Z3有什么特点,然后,举手回答,教师统一学生观点并板书.
【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.
学生活动:让学生找一找右图中还有没有对顶角,如果有,是哪两个角?
学生口答:∠2和∠4再也是对顶角.
紧扣对顶角定义强调以下两点:
(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.
(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.
反馈练习:投影显示(投影片2)
下列各图中,∠l和∠2是对顶角吗?为什么?(射线OA是活动的)
【教法说明】本组题目是巩固对顶角概念的,通过练习,使学生掌握在图形中辨认对顶角的要领,同时又用反例印证概念,使学生加深印象,最后一个图形为下面讲部补角做铺垫。
学生活动:观察图2-l,∠1和∠2与对顶角相比,有什么相同点和不同点,从而得出邻补角的定义.
【板书】∠l和∠2也是直线AB、CD相交得到的,它们不仅有一个公共顶点O,还有一条公共边OA,像这样的两个角叫做邻补角.
学生活动:让学生找一找图2-1中还有没有其他邻补角,如果有,是哪些角.
学生口答:∠1和∠4,∠2和∠3,∠3和∠4都是邻补角.
【教法说明】把邻补角的概念与对顶角概念对比着讲解,便于掌握概念之间的联系与 区别,加深对概念的理解.
提出问题:如右图,∠1和∠2还是邻补角吗?为什么?
师:邻补角也可以看成是一条直线与端点在这条直线上的一条射线组成的两个角,由此可知,邻补角是有特殊位置关系的两个互补的角.右图这样的邻补角在图形中也是常见的.在这种情况下,只存在一对邻补角,而不存在对顶角,与两条直线相交所得的角不同.
教师演示:图中射线OC固定在一个位置不动,把∠1和∠2拉开,并且保持角的大小不变,如右图(投影片3).
提出问题:∠l和∠2的和是多少度?∠l和∠2还是邻补角吗?为什么?
学生活动:观察图形的变换,回答教师提出的问题,同桌可相互讨论.
【教法说明】此问题意在区别互为补角和互为邻补角的概念,演示活动投影片,有助于学生抓住概念的本质,比教师单纯地强调效果更好.
2.对顶角的性质
提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?
学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.
【教法说明】学生说出对顶角∠l=∠3后,启发学生再说出∠2=∠4,然后得出对顶角相等的性质.在学生理解推理思路的基础上,板书为几何符号推理的格式.对顶角的性质不难得出,放手让学生展开讨论,充分发挥学生的主动性,在活跃课堂气氛的同时,培养学生的创造思维能力
【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),
∴∠l=∠3(同角的补角相等).
注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.
或写成:∵∠1= 180°-∠2,∠3=180°-∠2(邻补角定义),
∴∠1=∠3(等量代换).
【教法说明】推得“对顶角相等”这个结论的过程,是课本中初次出现的一步推理,使学生了解推理可以写成“∵……∴……”的形式,并且每一步都要有根据,也就是括号里填的理由.这种推理的格式以后还要逐步渗透和训练,现在不要求自己会写推理过程,只要求学生能看明白就可以了,为以后证明打好基础。
尝试反馈,巩固练习
投影显示(投影片4)
【教法说明】本级统习是巩固对顶角和邻补角概念的,同时培养学生的识图能力.第1题是课本第59页练习第2题的变式,第2题是课本第59页练习第3题和“想一想”的综合.解决这类题目的关键是要善于从复杂图形中分离出基本图形.对顶角、邻补角的基本图形是两条直线相交,则三条直线相交的图形应分解为三个两条直线交于一点的图形.如:
为此,对顶角有 2×3=6个,邻补角的对数为 4×3=12个.第3、4题是有关的概念的综合训练,其中第4题意在区别互为补角和互为邻补角的概念.
投影显示(投影片5)
【教法说明】第1题是直接利用对顶角相等的性质得出,第2、3题是结合图形利用对顶角相等的性质,第4题是课本59负练习第4题,是两条直线相交的一种特殊情况,为下节课讲两直线互相垂直埋下伏笔.
变式训练,培养能力
投影显示(投影片6)
学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
解:∠3=∠1=40°(对顶角相等).
∠2=180°-40°=140°(邻补角定义).
∠4=∠2=140°(对顶角相等).
【教法说明】例题一方面巩固了对顶角的性质;另一方面说明几何里的计算题,需要用到图形的几何性质,因此,要有根有据地计算.例题放手让学生自己解决,比教师单纯地讲解效果会更好.尽管学生书写格式不如课本上的规范,但通过集体讲评纠正后,学生印象更深刻.
学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题.
变式1:把∠l=40°变为∠2-∠1=40°
变式 2:把∠1=40°变为∠2是∠l的3倍
变式3:把∠1=40°变为∠1 :∠2=2:9
变式4:把∠1=40°变为∠1=平角
【教法说明】学生自编开放性的题目,一是活跃课堂气氛;二是培养学生的开放思维能力和逆向思维能力.变式1、2、3均可建立方程或方程组求解,几何中计算角度和线段长度等问题常借助代数方程来解决.
(四)总结、扩展
角的名称
特征
性质
相同点
不同点
对顶角
①两条直线相交面成的角
②有一个公共顶点
③没有公共边
对顶角相等
都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。
对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个有的对顶角有一个,而一个角的邻补角有两个。
邻补角
①两条直线相交面成的角
②有一个公共顶点
③有一条公共边
邻补角互补
学生活动:表格中的结论均由学生自己口答填出.
【教法说明】课堂小结以提问形式,由学生自己讨论,系统归纳总结,以便培养学生的概括表达能力.
八、布置作业
(一)必做题
课本第69页习题 2.1A组第2题.
(二)思考题
课本第70页习题2.1A组第4题
【教法说明】作业 紧紧围绕着对顶角、邻补角的概念及对顶角性质.思考题是对顶角性质的一个应用实例,结合图形可以看出,活动指针的读数,就是两直线相交成一个角的度数,培养学生应用数学的意识.
(三)作业 答案
2.解:(1)∠AOD的对顶角是∠BOC,∠EOC的对顶角是∠DOF.
(2)∠AOC的邻补角是∠AOD和∠BOC,∠EOB的邻补角是∠AOE和∠BOF.
(3)∠BOD=∠AOC=50°(对顶角相等),∠BOC=180°-50=130°(邻补角定义).
4.应用对顶角相等的性质测量角.
九、板书设计
热门文章青少年思想道德建设
当前我国作文教学改革的新趋势
古诗三首(墨梅 竹石 石灰吟)
第一场雪
Unit 2 Look at me第五课时
植物妈妈有办法
威尼斯的小艇
等比数列的前n项和
相关文章・角的画法
・角的度量
・角的比较
・角
・线段的比较与画法
・下学期 射线、线段
・直线
・一元一次方程的应用
中“ 课件”
相交线 篇7
相交线〈垂线〉
学习目标:
知识目标
了解两条直线互相垂直的概念;
2.知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线。
能力目标
培养提高学生观察、理解能力,几何语言能力、画图能力,抽象思维能力。运用知识解决实际问题能力。
德育目标
培养学生辩证唯物主义思想及不断发现,探索新知识的精神。
情感目标
通过创设情境,利用变式训练,多种教学手段来激发学生学习兴趣,给学生创造成功的机会,使他们爱学、会学、学会,营造学生可持续发展的机会。
重点:两直线互相垂直的有关性质 难点:过直线上(外)一点作已知直线的垂线
教具:多媒体、投影仪、自制的可旋转的两根木条等
[学习目标是从基础知识教学、基本技能训练、数学能力培养和德育目标四个方面,依据《数学课程标准》关于“垂线”的具体教学要求和各种教学原则,以及本节的教材内容与学生的实际确定的。]
互究策略:(教学流程)
一、背景1.[生活背景]旗杆与旗台边缘线的垂直关系;红十字会标志;
2.[知识背景]两条直线相交,产生两对对顶角,且对顶角相等。
二、师生互究1.创设问题情境
师:这是两幅草坪的图案。在绿色的草坪上,画着两条交叉的道路。你觉得甲图、乙图那幅更漂亮、更匀称。这是什么原因?[教师用多媒体或投影仪展示]
[学生众说纷纭,教师应给予充分的肯定]
师:图甲是两条直线相交的一种特殊情况,它在生活、生产实际中应用比较广。请你再举一些类似的例子。生:……
师:让我们共同探索图甲这种特殊情况 。
[借助于教具,模型,实物,图形及幻灯等教学手段,使学生先得到直观的感性认识,培养学生从感性到理性的认识方式]
2.回顾再现:对顶角相等
两条直线相交只有一个交点。如图(1),直线AB和CD相交,交点为点O,有四个小于平角的角,且∠AOC=∠BOD,∠AOD=∠BOC
1. 提高:教师演示自制教具,要求学生观察当一根木条绕着另一根木条旋转是的变化情况,并用数学语言进行描述。
[教师应鼓励学生大胆描述自己的观察结果,并及时予以肯定。]
师:两直线相交,有两组分别相等的角,当一个角等于90°时,其它三个角有什么变化?可能产生四个相等的角吗?如图(2)[同时演示教具] 将直线CD绕着点O旋转,当∠BOD=90°时,∠AOC、∠AOD、∠BOC是多少度?生:……师:你们的依据是什么?
生: ……(用度量的方法;利用对顶角相等;互补的概念……学生回答过程中,只要有道理就应予以鼓励)[这里希望在感性认识的基础上进行抽象概念的教学,培养学生的抽象思维能力。]
2. 提升:[教师引导学生归纳]两条直线互相垂直:两条直线相交所构成的四个角中有一个角是直角时,称这两条直线互相垂直。
师: