欢迎您访问教学资源网(www.jxzy.wang)
首页 > 教案设计 > 数学教案设计 > 代数式(精选15篇)

代数式(精选15篇)

网友 分享 时间: 加入收藏 我要投稿 点赞

代数式(精选15篇)

代数式 篇1

  教学目标 

  1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

  2.了解的概念,使学生能说出一个所表示的数量关系;

  3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

  4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

  教学建议

  1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出的概念。

  2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对的概念课文没有直接给出,而是用实例形象地说明了的概念。对的概念可以从三个方面去理解:

  (1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.

  (2)中并不要求数和表示数的字母同时出现,单独的一个数和字母也是.如:2, 都是.

  (3)是用基本的运算符号把数、表示数的字母连接而成的式子,一定要弄清一个有几种运算和运算顺序。不含表示关系的符号,如等号、不等号.如 , ,等都是,而 , , , 等都不是.

  3.教学难点 分析:能正确说出一个的数量关系,即用语言表达的意义,一定要理清中含有的各种运算及其顺序。用语言表达的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

  如:说出7(a-3)的意义。

  分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

  4.书写的注意事项:

  (1)中数字与字母或者字母与字母相乘时,通常把乘号简写作“・”或省略不写,同时要求数字应写在字母前面.如 ,应写作 或写作 , 应写作 或写作 .带分数与字母相乘,应把带分数化成假分数,如 应写成 .数字与数字相乘一般仍用“×”号.

  (2)中有除法运算时,一般按照分数的写法来写.如: 应写作

  (3)含有加减运算的需注明单位时,一定要把整个式子括起来.

  5.对本节例题的分析:

  例1是用表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的表示,课文安排在下一节中专门介绍.

  例2是说出一些比较简单的的意义.因为中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.

  6.教法建议

  (1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

  (2)在本节的学习过程中,要使学生理解的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是,理清中的运算和运算顺序,才能正确说出一个所表示的数量关系,从而认识字母表示数的意义――普遍性、简明性,也为列做准备。

  (3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。

  (4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

  (5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比如,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。

  7.教学重点、难点:

  重点:用字母表示数的意义

  难点:学会用字母表示数及正确说出一个所表示的数量关系。

  教学设计示例

  教学目标 

  1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

  2.了解的概念,使学生能说出一个所表示的数量关系;

  3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

  4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法.

  教学重点和难点

  重点:用字母表示数的意义

  难点:学会用字母表示数及正确地说出所表示的数量关系

  课堂教学过程 设计

  一、从学生原有的认知结构提出问题

  1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?

  (通过启发、归纳最后师生共同得出用字母表示数的五种运算律)

  (1)加法交换律 a+b=b+a;

  (2)乘法交换律 a・b=b・a;

  (3)加法结合律 (a+b)+c=a+(b+c);

  (4)乘法结合律 (ab)c=a(bc);

  (5)乘法分配律 a(b+c)=ab+ac

  指出:(1)“×”也可以写成“・”号或者省略不写,但数与数之间相乘,一般仍用“×”;

  (2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数

  2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?

  3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?

  4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?

  (用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)

  此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b, 以及a2等等都叫.那么究竟什么叫呢?的意义又是什么呢?这正是本节课我们将要学习的内容.

  三、讲授新课

  1

  单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫.学习代数,首先要学习用表示数量关系,明确代数上的意义

  2举例说明

  例1  填空:

  (1)每包书有12册,n包书有__________册;

  (2)温度由t℃下降到2℃后是_________℃;

  (3)棱长是a厘米的正方体的体积是_____立方厘米;

  (4)产量由m千克增长10%,就达到_______千克

  (此例题用投影给出,学生口答完成)

  解:(1)12n;  (2)(t-2);   (3)a3;   (4)(1+10%)m

  例2  说出下列的意义:

  (1) 2a+3    (2)2(a+3);     (3)   (4)a-   (5)a2+b2   (6)(a+b) 2

  解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;

  (3) 的意义是c除以ab的商;  (4)a- 的意义是a减去 的差;

  (5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方

  说明:(1)本题应由教师示范来完成;

  (2)对于的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等

  例3  用表示:

  (1)m与n的和除以10的商;

  (2)m与5n的差的平方;

  (3)x的2倍与y的和;

  (4)ν的立方与t的3倍的积

  分析:用表示用语言叙述的数量关系要注意:①弄清中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面

  解:(1) ;   (2)(m-5n)2   (3)2x+y;  (4)3tν3

  四、课堂练习

  1填空:(投影)

  (1)n箱苹果重p千克,每箱重_____千克;

  (2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;

  (3)底为a,高为h的三角形面积是______;

  (4)全校学生人数是x,其中女生占48%,则女生人数是____,男生人数是____

  2说出下列的意义:(投影)

  (1)2a-3c;   (2) ;   (3)ab+1;   (4)a2-b2

  3用表示:(投影)

  (1)x与y的和;  (2)x的平方与y的立方的差;

  (3)a的60%与b的2倍的和;  (4)a除以2的商与b除3的商的和

  五、师生共同小结

  首先,提出如下问题:

  1本节课学习了哪些内容?2用字母表示数的意义是什么?

  3什么叫?

  教师在学生回答上述问题的基础上,指出:①实际上就是算式,字母像数字一样也可以进行运算;②在和运算结果中,如有单位时,要正确地使用括号

  六、作业 

  1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长

  2张强比王华大3岁,当张强a岁时,王华的年龄是多少?

  3飞机的速度是汽车的40倍,自行车的速度是汽车的 ,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?

  4a千克大米的售价是6元,1千克大米售多少元?

  5圆的半径是R厘米,它的面积是多少?

  6用表示:

  (1)长为a,宽为b米的长方形的周长;

  (2)宽为b米,长是宽的2倍的长方形的周长;

  (3)长是a米,宽是长的 的长方形的周长;

  (4)宽为b米,长比宽多2米的长方形的周长

代数式 篇2

  教学目标

  1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

  2.了解的概念,使学生能说出一个所表示的数量关系;

  3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

  4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

  教学建议

  1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出的概念。

  2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对的概念课文没有直接给出,而是用实例形象地说明了的概念。对的概念可以从三个方面去理解:

  (1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.

  (2)中并不要求数和表示数的字母同时出现,单独的一个数和字母也是.如:2, 都是.

  (3)是用基本的运算符号把数、表示数的字母连接而成的式子,一定要弄清一个有几种运算和运算顺序。不含表示关系的符号,如等号、不等号.如 , ,等都是,而 , , , 等都不是.

  3.教学难点分析:能正确说出一个的数量关系,即用语言表达的意义,一定要理清中含有的各种运算及其顺序。用语言表达的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

  如:说出7(a-3)的意义。

  分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

  4.书写的注意事项:

  (1)中数字与字母或者字母与字母相乘时,通常把乘号简写作“・”或省略不写,同时要求数字应写在字母前面.如 ,应写作 或写作 , 应写作 或写作 .带分数与字母相乘,应把带分数化成假分数,如 应写成 .数字与数字相乘一般仍用“×”号.

  (2)中有除法运算时,一般按照分数的写法来写.如: 应写作

  (3)含有加减运算的需注明单位时,一定要把整个式子括起来.

  5.对本节例题的分析:

  例1是用表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的表示,课文安排在下一节中专门介绍.

  例2是说出一些比较简单的的意义.因为中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.

  6.教法建议

  (1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

  (2)在本节的学习过程中,要使学生理解的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是,理清中的运算和运算顺序,才能正确说出一个所表示的数量关系,从而认识字母表示数的意义――普遍性、简明性,也为列做准备。

  (3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。

  (4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

  (5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比如,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。

  7.教学重点、难点:

  重点:用字母表示数的意义

  难点:学会用字母表示数及正确说出一个所表示的数量关系。

  教学设计示例

  教学目标

  1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

  2.了解的概念,使学生能说出一个所表示的数量关系;

  3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

  4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法.

  教学重点和难点

  重点:用字母表示数的意义

  难点:学会用字母表示数及正确地说出所表示的数量关系

  课堂教学过程设计

  一、从学生原有的认知结构提出问题

  1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?

  (通过启发、归纳最后师生共同得出用字母表示数的五种运算律)

  (1)加法交换律 a+b=b+a;

  (2)乘法交换律 a・b=b・a;

  (3)加法结合律 (a+b)+c=a+(b+c);

  (4)乘法结合律 (ab)c=a(bc);

  (5)乘法分配律 a(b+c)=ab+ac

  指出:(1)“×”也可以写成“・”号或者省略不写,但数与数之间相乘,一般仍用“×”;

  (2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数

  2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?

  3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?

  4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?

  (用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)

  此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b, 以及a2等等都叫.那么究竟什么叫呢?的意义又是什么呢?这正是本节课我们将要学习的内容.

  三、讲授新课

  1

  单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫.学习代数,首先要学习用表示数量关系,明确代数上的意义

  2举例说明

  例1  填空:

  (1)每包书有12册,n包书有__________册;

  (2)温度由t℃下降到2℃后是_________℃;

  (3)棱长是a厘米的正方体的体积是_____立方厘米;

  (4)产量由m千克增长10%,就达到_______千克

  (此例题用投影给出,学生口答完成)

  解:(1)12n;  (2)(t-2);   (3)a3;   (4)(1+10%)m

  例2  说出下列的意义:

  (1) 2a+3    (2)2(a+3);     (3)   (4)a-   (5)a2+b2   (6)(a+b) 2

  解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;

  (3) 的意义是c除以ab的商;  (4)a- 的意义是a减去 的差;

  (5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方

  说明:(1)本题应由教师示范来完成;

  (2)对于的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等

  例3  用表示:

  (1)m与n的和除以10的商;

  (2)m与5n的差的平方;

  (3)x的2倍与y的和;

  (4)ν的立方与t的3倍的积

  分析:用表示用语言叙述的数量关系要注意:①弄清中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面

  解:(1) ;   (2)(m-5n)2   (3)2x+y;  (4)3tν3

  四、课堂练习

  1填空:(投影)

  (1)n箱苹果重p千克,每箱重_____千克;

  (2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;

  (3)底为a,高为h的三角形面积是______;

  (4)全校学生人数是x,其中女生占48%,则女生人数是____,男生人数是____

  2说出下列的意义:(投影)

  (1)2a-3c;   (2) ;   (3)ab+1;   (4)a2-b2

  3用表示:(投影)

  (1)x与y的和;  (2)x的平方与y的立方的差;

  (3)a的60%与b的2倍的和;  (4)a除以2的商与b除3的商的和

  五、师生共同小结

  首先,提出如下问题:

  1本节课学习了哪些内容?2用字母表示数的意义是什么?

  3什么叫?

  教师在学生回答上述问题的基础上,指出:①实际上就是算式,字母像数字一样也可以进行运算;②在和运算结果中,如有单位时,要正确地使用括号

  六、作业 

  1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长

  2张强比王华大3岁,当张强a岁时,王华的年龄是多少?

  3飞机的速度是汽车的40倍,自行车的速度是汽车的 ,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?

  4a千克大米的售价是6元,1千克大米售多少元?

  5圆的半径是R厘米,它的面积是多少?

  6用表示:

  (1)长为a,宽为b米的长方形的周长;

  (2)宽为b米,长是宽的2倍的长方形的周长;

  (3)长是a米,宽是长的 的长方形的周长;

  (4)宽为b米,长比宽多2米的长方形的周长

代数式 篇3

  教学目标 

  1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

  2.了解的概念,使学生能说出一个所表示的数量关系;

  3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

  4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

  教学建议

  1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出的概念。

  2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对的概念课文没有直接给出,而是用实例形象地说明了的概念。对的概念可以从三个方面去理解:

  (1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.

  (2)中并不要求数和表示数的字母同时出现,单独的一个数和字母也是.如:2, 都是.

  (3)是用基本的运算符号把数、表示数的字母连接而成的式子,一定要弄清一个有几种运算和运算顺序。不含表示关系的符号,如等号、不等号.如 , ,等都是,而 , , , 等都不是.

  3.教学难点 分析:能正确说出一个的数量关系,即用语言表达的意义,一定要理清中含有的各种运算及其顺序。用语言表达的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

  如:说出7(a-3)的意义。

  分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

  4.书写的注意事项:

  (1)中数字与字母或者字母与字母相乘时,通常把乘号简写作“・”或省略不写,同时要求数字应写在字母前面.如 ,应写作 或写作 , 应写作 或写作 .带分数与字母相乘,应把带分数化成假分数,如 应写成 .数字与数字相乘一般仍用“×”号.

  (2)中有除法运算时,一般按照分数的写法来写.如: 应写作

  (3)含有加减运算的需注明单位时,一定要把整个式子括起来.

  5.对本节例题的分析:

  例1是用表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的表示,课文安排在下一节中专门介绍.

  例2是说出一些比较简单的的意义.因为中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.

  6.教法建议

  (1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

  (2)在本节的学习过程中,要使学生理解的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是,理清中的运算和运算顺序,才能正确说出一个所表示的数量关系,从而认识字母表示数的意义――普遍性、简明性,也为列做准备。

  (3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。

  (4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

  (5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比如,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。

  7.教学重点、难点:

  重点:用字母表示数的意义

  难点:学会用字母表示数及正确说出一个所表示的数量关系。

  教学设计示例

  教学目标 

  1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

  2.了解的概念,使学生能说出一个所表示的数量关系;

  3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

  4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法.

  教学重点和难点

  重点:用字母表示数的意义

  难点:学会用字母表示数及正确地说出所表示的数量关系

  课堂教学过程 设计

  一、从学生原有的认知结构提出问题

  1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?

  (通过启发、归纳最后师生共同得出用字母表示数的五种运算律)

  (1)加法交换律 a+b=b+a;

  (2)乘法交换律 a・b=b・a;

  (3)加法结合律 (a+b)+c=a+(b+c);

  (4)乘法结合律 (ab)c=a(bc);

  (5)乘法分配律 a(b+c)=ab+ac

  指出:(1)“×”也可以写成“・”号或者省略不写,但数与数之间相乘,一般仍用“×”;

  (2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数

  2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?

  3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?

  4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?

  (用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)

  此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b, 以及a2等等都叫.那么究竟什么叫呢?的意义又是什么呢?这正是本节课我们将要学习的内容.

  三、讲授新课

  1

  单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫.学习代数,首先要学习用表示数量关系,明确代数上的意义

  2举例说明

  例1  填空:

  (1)每包书有12册,n包书有__________册;

  (2)温度由t℃下降到2℃后是_________℃;

  (3)棱长是a厘米的正方体的体积是_____立方厘米;

  (4)产量由m千克增长10%,就达到_______千克

  (此例题用投影给出,学生口答完成)

  解:(1)12n;  (2)(t-2);   (3)a3;   (4)(1+10%)m

  例2  说出下列的意义:

  (1) 2a+3    (2)2(a+3);     (3)   (4)a-   (5)a2+b2   (6)(a+b) 2

  解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;

  (3) 的意义是c除以ab的商;  (4)a- 的意义是a减去 的差;

  (5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方

  说明:(1)本题应由教师示范来完成;

  (2)对于的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等

  例3  用表示:

  (1)m与n的和除以10的商;

  (2)m与5n的差的平方;

  (3)x的2倍与y的和;

  (4)ν的立方与t的3倍的积

  分析:用表示用语言叙述的数量关系要注意:①弄清中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面

  解:(1) ;   (2)(m-5n)2   (3)2x+y;  (4)3tν3

  四、课堂练习

  1填空:(投影)

  (1)n箱苹果重p千克,每箱重_____千克;

  (2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;

  (3)底为a,高为h的三角形面积是______;

  (4)全校学生人数是x,其中女生占48%,则女生人数是____,男生人数是____

  2说出下列的意义:(投影)

  (1)2a-3c;   (2) ;   (3)ab+1;   (4)a2-b2

  3用表示:(投影)

  (1)x与y的和;  (2)x的平方与y的立方的差;

  (3)a的60%与b的2倍的和;  (4)a除以2的商与b除3的商的和

  五、师生共同小结

  首先,提出如下问题:

  1本节课学习了哪些内容?2用字母表示数的意义是什么?

  3什么叫?

  教师在学生回答上述问题的基础上,指出:①实际上就是算式,字母像数字一样也可以进行运算;②在和运算结果中,如有单位时,要正确地使用括号

  六、作业 

  1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长

  2张强比王华大3岁,当张强a岁时,王华的年龄是多少?

  3飞机的速度是汽车的40倍,自行车的速度是汽车的 ,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?

  4a千克大米的售价是6元,1千克大米售多少元?

  5圆的半径是R厘米,它的面积是多少?

  6用表示:

  (1)长为a,宽为b米的长方形的周长;

  (2)宽为b米,长是宽的2倍的长方形的周长;

  (3)长是a米,宽是长的 的长方形的周长;

  (4)宽为b米,长比宽多2米的长方形的周长

代数式 篇4

  一、教学目标 :

  1. 使学生认识用字母表示数的意义;

  2. 使学生理解的概念,理解一些的实际背景或几何意义,对符号语言有进一步的理解;

  3. 能说出一个表示的数量关系,能列出

  二、教学重点和难点

  重点:理解的概念。

  难点:把数式数量关系用简明地表示出来。

  三、教学过程 

  (一)复习、引入

  提问:

  1. 怎样用字母表示加法交换律?

  2. 怎样用字母表示乘法交换律?

  3. 怎样用字母表示加法结合律、乘法结合律、分配律?

  答:1. 用字母表示加法交换律:

  a+b=b+a

  2. 用字母表示乘法交换律:

  a×b=b×a

  3. 用字母表示加法结合律:

  (a+b)+c=a+(b+c)

  用字母表示乘法结合律:

  (a×b)×c=a×(b×c)

  用字母表示乘法对加法分配律:

  a×(b+c)=a×b+a×c

  以上是用字母表示数的例子,还有什么数可以用字母表示呢?

  (二)新课

  Ⅰ.的概念:

  下面看几个用字母表示数的例子:

  1. 如果甲数为x,乙数为y,那么甲、乙两数的差是多少?

  答:甲、乙两数的差是x-y。

  2. 如果长方形的长各宽分别为a和b,那么它的周长和面积各是多少?

  答:长方形的周长是2(a+b);

  长方形的面积是a・b。

  3. 如果梯形的上底为a,下底为b,高为h,那么它的面积是多少?

  答:梯形的面积是

  现在我们来分析上面四个公式有哪些共同的特征。

  (1)这些式子中,都含有数字或表示数字的字母;(2)它们都是用运算符号连接起来的。

  实际上,用运算符号把数或表示数的字母连接而成的式子,就是。

  单独的一个数或一个字母,也是,如5,a,m等都是。

  说明:

  (1)这里的运算是指加、减、乘、除、乘方、开方(可以提出“开方”这个词,以后要学)。

  (2)强调仅指用“运算”符号连接数或字母而得到的算式,中不含有等号或不等号。如S=ab是等式,也可表示长方形面积公式。它不是,而ab是。

  练习:举出五个含有加、减、乘、除、乘方运算的(每一个至少含有两种运算)。

  (3)里的每个字母都表示数,因此数的一些运算规律也适用于。

  如:2x+2y=2(x+y)

  例1 指出下列的意义:

  (1)2a+5; (2)2(a+5); (3) ;

  (4) (5) (6)

  分析:说出的意义就是要求写出的读法,一个可以有几种读数,写出一种即可。

  解:(1)2a+5表示的是a的2倍与5的和.

  (2)2(a+5)表示的是a与5的和的2倍.

  (3) 表示的是a的平方与b的平方的和.

  (4) 表示的是a,b两数和的平方.

  (5) 表示的是x的倒数.

  (6) 表示的是x与它的倒数的和

  注意:解这类问题的关键是:(1)认真分析中含有哪些运算,它们运算顺序是什么,从而正确,简明地体现出的运算顺序,(2)不会引起误解;(3)为了简明地叙述的意义,也可以找出最后的运算,把它用语言表达出来,其它的运算用表示。如(7) 的意义可叙述为a+b与a-b的商,(8)3(x2-y2)可叙述为3与x2-y2的积。

  Ⅱ.列:

  我们用可以表示数量和数量之间的关系.如表示“a,b两数之积与 的和”,“a,8两数之和与b,c两数之差的积”,可以分别按下列步骤列:

  例2 用表示:

  (1) a于b的差与c的平方的和.

  (2) 百位数字是a,十位数字是b,个位数字是c的三位数.

  (3) 用含同一个字母的表示三个连续的整数,并写出它们的和.

  解:(1)(a-b)+ .

  (2)100a+10b+c(其中,a,b,c是0到9之间的整数,且a≠0).

  (3)设m是整数,三个连续整数可表示为m-1,m,m+1,它们的和为(m-1)+m+(m+1),即3m.

  注意:(1)在中,字母与数或字母与字母相乘,通常把乘号写作“・”或省略号不写,如2×a写作2・a或2a(但不能写作a2),a×b写作a・b或ab.

  (2)中出现除法运算时,一般以分数的形式表示,如s÷t写作 (t≠0)

  (三)巩固练习:

  1.指出下列各的意义:

  (1) +2; (2)a(b+1)-1.

  2.用表示:

  (1)a,b两数的差与c的积.

  (2)x,y两数的和的平方减去它们差的平方.

  (3)一个数等于a的3倍与b的和.

  (四)小结

  本节主要学习了的概念,以及的读法和写法,并初步学习用表示简单的数量和数量关系。

  学习要特别注意以下几点:

  (1) 中含有加、减、承、除、开方、乘方等运算符号,不含有等号或不等号,单独的一个数(或字母)也是。

  (2) 与公式不同,公式是等式,但不是,是不含“=”号的。

  (3) 的书写要严格遵照其书写规定:

  ① 中的“×”,简写为“・”或省略不写,数字与字母相乘时,数字要写在字母的前面,如果是带分数,要化成假分数,数字与数字相乘仍用“×”。

  ② 在中遇到除法运算时,一般按分数的形式表示。

  (4) 的读法没有统一的规定,一般以能够简明的体现出的运算顺序,不致于引起误会为主

  (五)作业 

  书P145 1.(2),(4) 2.(1),(5)

代数式 篇5

  教学目标 

  1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

  2.了解的概念,使学生能说出一个所表示的数量关系;

  3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

  4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

  教学建议

  1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出的概念。

  2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对的概念课文没有直接给出,而是用实例形象地说明了的概念。对的概念可以从三个方面去理解:

  (1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.

  (2)中并不要求数和表示数的字母同时出现,单独的一个数和字母也是.如:2, 都是.

  (3)是用基本的运算符号把数、表示数的字母连接而成的式子,一定要弄清一个有几种运算和运算顺序。不含表示关系的符号,如等号、不等号.如 , ,等都是,而 , , , 等都不是.

  3.教学难点 分析:能正确说出一个的数量关系,即用语言表达的意义,一定要理清中含有的各种运算及其顺序。用语言表达的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

  如:说出7(a-3)的意义。

  分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

  4.书写的注意事项:

  (1)中数字与字母或者字母与字母相乘时,通常把乘号简写作“・”或省略不写,同时要求数字应写在字母前面.如 ,应写作 或写作 , 应写作 或写作 .带分数与字母相乘,应把带分数化成假分数,如 应写成 .数字与数字相乘一般仍用“×”号.

  (2)中有除法运算时,一般按照分数的写法来写.如: 应写作

  (3)含有加减运算的需注明单位时,一定要把整个式子括起来.

  5.对本节例题的分析:

  例1是用表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的表示,课文安排在下一节中专门介绍.

  例2是说出一些比较简单的的意义.因为中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.

  6.教法建议

  (1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

  (2)在本节的学习过程中,要使学生理解的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是,理清中的运算和运算顺序,才能正确说出一个所表示的数量关系,从而认识字母表示数的意义――普遍性、简明性,也为列做准备。

  (3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。

  (4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

  (5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比如,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。

  7.教学重点、难点:

  重点:用字母表示数的意义

  难点:学会用字母表示数及正确说出一个所表示的数量关系。

  教学设计示例

  教学目标 

  1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

  2.了解的概念,使学生能说出一个所表示的数量关系;

  3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

  4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法.

  教学重点和难点

  重点:用字母表示数的意义

  难点:学会用字母表示数及正确地说出所表示的数量关系

  课堂教学过程 设计

  一、从学生原有的认知结构提出问题

  1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?

  (通过启发、归纳最后师生共同得出用字母表示数的五种运算律)

  (1)加法交换律 a+b=b+a;

  (2)乘法交换律 a・b=b・a;

  (3)加法结合律 (a+b)+c=a+(b+c);

  (4)乘法结合律 (ab)c=a(bc);

  (5)乘法分配律 a(b+c)=ab+ac

  指出:(1)“×”也可以写成“・”号或者省略不写,但数与数之间相乘,一般仍用“×”;

  (2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数

  2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?

  3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?

  4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?

  (用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)

  此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b, 以及a2等等都叫.那么究竟什么叫呢?的意义又是什么呢?这正是本节课我们将要学习的内容.

  三、讲授新课

  1

  单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫.学习代数,首先要学习用表示数量关系,明确代数上的意义

  2举例说明

  例1  填空:

  (1)每包书有12册,n包书有__________册;

  (2)温度由t℃下降到2℃后是_________℃;

  (3)棱长是a厘米的正方体的体积是_____立方厘米;

  (4)产量由m千克增长10%,就达到_______千克

  (此例题用投影给出,学生口答完成)

  解:(1)12n;  (2)(t-2);   (3)a3;   (4)(1+10%)m

  例2  说出下列的意义:

  (1) 2a+3    (2)2(a+3);     (3)   (4)a-   (5)a2+b2   (6)(a+b) 2

  解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;

  (3) 的意义是c除以ab的商;  (4)a- 的意义是a减去 的差;

  (5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方

  说明:(1)本题应由教师示范来完成;

  (2)对于的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等

  例3  用表示:

  (1)m与n的和除以10的商;

  (2)m与5n的差的平方;

  (3)x的2倍与y的和;

  (4)ν的立方与t的3倍的积

  分析:用表示用语言叙述的数量关系要注意:①弄清中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面

  解:(1) ;   (2)(m-5n)2   (3)2x+y;  (4)3tν3

  四、课堂练习

  1填空:(投影)

  (1)n箱苹果重p千克,每箱重_____千克;

  (2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;

  (3)底为a,高为h的三角形面积是______;

  (4)全校学生人数是x,其中女生占48%,则女生人数是____,男生人数是____

  2说出下列的意义:(投影)

  (1)2a-3c;   (2) ;   (3)ab+1;   (4)a2-b2

  3用表示:(投影)

  (1)x与y的和;  (2)x的平方与y的立方的差;

  (3)a的60%与b的2倍的和;  (4)a除以2的商与b除3的商的和

  五、师生共同小结

  首先,提出如下问题:

  1本节课学习了哪些内容?2用字母表示数的意义是什么?

  3什么叫?

  教师在学生回答上述问题的基础上,指出:①实际上就是算式,字母像数字一样也可以进行运算;②在和运算结果中,如有单位时,要正确地使用括号

  六、作业 

  1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长

  2张强比王华大3岁,当张强a岁时,王华的年龄是多少?

  3飞机的速度是汽车的40倍,自行车的速度是汽车的 ,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?

  4a千克大米的售价是6元,1千克大米售多少元?

  5圆的半径是R厘米,它的面积是多少?

  6用表示:

  (1)长为a,宽为b米的长方形的周长;

  (2)宽为b米,长是宽的2倍的长方形的周长;

  (3)长是a米,宽是长的 的长方形的周长;

  (4)宽为b米,长比宽多2米的长方形的周长

代数式 篇6

  教学目标

  1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

  2.了解的概念,使学生能说出一个所表示的数量关系;

  3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

  4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

  教学建议

  1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出的概念。

  2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对的概念课文没有直接给出,而是用实例形象地说明了的概念。对的概念可以从三个方面去理解:

  (1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.

  (2)中并不要求数和表示数的字母同时出现,单独的一个数和字母也是.如:2, 都是.

  (3)是用基本的运算符号把数、表示数的字母连接而成的式子,一定要弄清一个有几种运算和运算顺序。不含表示关系的符号,如等号、不等号.如 , ,等都是,而 , , , 等都不是.

  3.教学难点分析:能正确说出一个的数量关系,即用语言表达的意义,一定要理清中含有的各种运算及其顺序。用语言表达的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

  如:说出7(a-3)的意义。

  分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

  4.书写的注意事项:

  (1)中数字与字母或者字母与字母相乘时,通常把乘号简写作“・”或省略不写,同时要求数字应写在字母前面.如 ,应写作 或写作 , 应写作 或写作 .带分数与字母相乘,应把带分数化成假分数,如 应写成 .数字与数字相乘一般仍用“×”号.

  (2)中有除法运算时,一般按照分数的写法来写.如: 应写作

  (3)含有加减运算的需注明单位时,一定要把整个式子括起来.

  5.对本节例题的分析:

  例1是用表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的表示,课文安排在下一节中专门介绍.

  例2是说出一些比较简单的的意义.因为中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.

  6.教法建议

  (1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

  (2)在本节的学习过程中,要使学生理解的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是,理清中的运算和运算顺序,才能正确说出一个所表示的数量关系,从而认识字母表示数的意义――普遍性、简明性,也为列做准备。

  (3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。

  (4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

  (5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比如,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。

  7.教学重点、难点:

  重点:用字母表示数的意义

  难点:学会用字母表示数及正确说出一个所表示的数量关系。

  第 1 2 页  

代数式 篇7

  理数的5次方的除法,怎样计算?让学生的思维有了矛盾的焦点。同时已知非常简单,要求的代数式却比较难,一下很难找到着手点。但我们如果将已知的条件等式作适当变形,又将待求值的代数式一步步调整,就马上有“柳暗花明”的感觉。

  回顾总结:数学题目,已知的与要求的,总是紧密相关的。从已知条件出发,逐步探求使已知条件成立的必要条件。再从结论出发,一步步把问题转化,每一步都要作方向猜想和方向择优,需觅取有用的乃至关键性的信息。且需采取相应的构作性措施,进行探讨,推导。两相结合,前后夹攻,在中间找到突破口,胜利会师,圆满解决。

  三  突出创新思维  灵活运用“韦达定理”。

  韦达定理  如果方程 的两个根是 ,那么

  例7     已知 且 

  求代数式 的值。

  分析:在经历了前面6个题目的解题过程后,学生们有了强烈的解题欲望,即思想完全集中于解题之中。在求解进行到某一步奏,即使很难看到下一步该怎么办,也会变换各种不同的角度再观察,反复分析。当把待求值的代数式化为 后,对此式仔细观察,运用直觉思维的形式,便会突然闪现出只要求出 与 的和与积即可,而利用已知条件并借助于韦达定理便可求得。

  解之得     所以   

代数式 篇8

  教学内容:九年义务教育六年级北师大版,第15题―17题。教学目标:1、使学生更深地理解用字母表示数的意义和方法,发展学生抽象概括能力。2、通过对简易方程的整理和复习,学生之间相互质疑,相互辩论,相互评价,完成知识结构。3、加强数学和学生生活实际的联系,创设互相协作积极向上的学习情境,培养学生创新意识和全员参与的意识。教学重点:通过整理―交流―总结、梳理―综合练习,找准知识间的联系与区别,完成知识结构,形成知识网络。教学过程:一、用字母表示数。创设情境激发兴趣。1、师生共同游戏:师先出数,请学生举起和老师相同的数,如:师出比a多3的数,学生举a+3。使学生观察出手中数的特点。并试着用字母表示一些我们学过的知识。通过学生评价,相互补充后理出:在书写含有字母的式子时,应注意什么?2、计对性练习。(1)判断正误:①a×8简写成(     )②a3和3a表示的意义相同③25×8的号可以省略不写。(    )④a×b可以写成a・ b也可以写成ab(    )⑤5×4.5可以写成a4.5。(2)用含有字母的式子表示下面数量关系。①练习本每本a元,买6本要用     元。②用a表示单位,x表y数量,c表示总价,那么c=     ,a=      ,x=      。3、想一想:用字母表示数有什么好处?学生讨论得出,用字母表示数除了简明易记,还便于应用。二、简易方程。小组探究,共同参与。1、通过学生自己举例,出示方程、学生之间,组与组之间,师生之间,相互提问,相互质疑,相互辩论,相互评价,完成知识结构。如:概括方程这部分的知识,提出问题考考大家。通过学生自己提问,自己解答,从而复习和区别一些易混淆的内容。2、反馈练习。(1)解方程:3x+8×1/2=13    1/2x-25%x=10(2)在练习过程中,学生之间相互启发,回忆得出解方程的依据。(3)列方程解应用题。出示:一个数的1/2比这个数的25%多10,这个数是多少?三、归纳概括,形成网络图。今天,我们整理和复习了用字母表示数和简易方程,谈谈这节课们最大的收获是什么?四、综合练习、拓展应用:1、口答填空:(1)比m的3倍多5的数是       (2)8.4与m的和的4倍是(3)一个两位数、十位上数字是a、个位上数字是b、这个数是        。计算:(1)a=17  b=8  c=4  求(a+b-c)*3的值是多少?(2)5x=36-4x   (3)x+63/4=11.5五、布置作业:总复习p42第15题、第16题、第17题。板书设计             运算定理整        用字母表示数       计算公式理                          数量关系和                          方程复         简易方程         方程的解习                          解方程

代数式 篇9

  教学目标 

  1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

  2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

  3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

  4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

  教学建议

  1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

  2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:

  (1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.  

  (2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2, 都是代数式.

  (3)代数式是用基本的运算符号把数、表示数的字母连接而成的式子,一定要弄清一个代数式有几种运算和运算顺序。代数式不含表示关系的符号,如等号、不等号.如 , ,等都是代数式,而 , , , 等都不是代数式.

  3.教学难点 分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

  如:说出代数式7(a-3)的意义。

  分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

  4.书写代数式的注意事项:

  (1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面.如 ,应写作 或写作 , 应写作 或写作 .带分数与字母相乘,应把带分数化成假分数,如 应写成 .数字与数字相乘一般仍用“×”号.

  (2)代数式中有除法运算时,一般按照分数的写法来写.如: 应写作

  (3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.

  5.对本节例题的分析:

  例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.

  例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.

  6.教法建议

  (1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

  (2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义――普遍性、简明性,也为列代数式做准备。

  (3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。

  (4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

  (5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比如,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。

  7.教学重点、难点:

  重点:用字母表示数的意义

  难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。

  教学设计示例

  代数式

  教学目标 

  1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

  2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

  3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

  4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法.

  教学重点和难点

  重点:用字母表示数的意义

  难点:学会用字母表示数及正确地说出代数式所表示的数量关系

  课堂教学过程 设计

  一、从学生原有的认知结构提出问题

  1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?

  (通过启发、归纳最后师生共同得出用字母表示数的五种运算律)

  (1)加法交换律 a+b=b+a;

  (2)乘法交换律 a·b=b·a;

  (3)加法结合律 (a+b)+c=a+(b+c);

  (4)乘法结合律 (ab)c=a(bc);

  (5)乘法分配律 a(b+c)=ab+ac

  指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;

  (2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数

  2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?

  3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?

  4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?

  (用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)

  此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b, 以及a2等等都叫代数式.那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.

  三、讲授新课

  1代数式

  单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数上的意义

  2举例说明

  例1  填空:

  (1)每包书有12册,n包书有__________册;

  (2)温度由t℃下降到2℃后是_________℃;

  (3)棱长是a厘米的正方体的体积是_____立方厘米;

  (4)产量由m千克增长10%,就达到_______千克

  (此例题用投影给出,学生口答完成)

  解:(1)12n;  (2)(t-2);   (3)a3;   (4)(1+10%)m

  例2  说出下列代数式的意义:

  (1) 2a+3    (2)2(a+3);     (3)   (4)a-   (5)a2+b2   (6)(a+b) 2

  解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;

  (3) 的意义是c除以ab的商;  (4)a- 的意义是a减去 的差;

  (5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方

  说明:(1)本题应由教师示范来完成;

  (2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等

  例3  用代数式表示:

  (1)m与n的和除以10的商;

  (2)m与5n的差的平方;

  (3)x的2倍与y的和;

  (4)ν的立方与t的3倍的积

  分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面

  解:(1) ;   (2)(m-5n)2   (3)2x+y;  (4)3tν3

  四、课堂练习

  1填空:(投影)

  (1)n箱苹果重p千克,每箱重_____千克;

  (2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;

  (3)底为a,高为h的三角形面积是______;

  (4)全校学生人数是x,其中女生占48%,则女生人数是____,男生人数是____

  2说出下列代数式的意义:(投影)

  (1)2a-3c;   (2) ;   (3)ab+1;   (4)a2-b2

  3用代数式表示:(投影)

  (1)x与y的和;  (2)x的平方与y的立方的差;

  (3)a的60%与b的2倍的和;  (4)a除以2的商与b除3的商的和

  五、师生共同小结

  首先,提出如下问题:

  1本节课学习了哪些内容?2用字母表示数的意义是什么?

  3什么叫代数式?

  教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号

  六、作业 

  1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长

  2张强比王华大3岁,当张强a岁时,王华的年龄是多少?

  3飞机的速度是汽车的40倍,自行车的速度是汽车的 ,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?

  4a千克大米的售价是6元,1千克大米售多少元?

  5圆的半径是R厘米,它的面积是多少?

  6用代数式表示:

  (1)长为a,宽为b米的长方形的周长;

  (2)宽为b米,长是宽的2倍的长方形的周长;

  (3)长是a米,宽是长的 的长方形的周长;

  (4)宽为b米,长比宽多2米的长方形的周长

代数式 篇10

  第一、能达到我们所制定的目标。在教学的过程中我以例题精讲,并与中考相同或靠近的题目为例,在解题过程中实现三个目标,化解重难点,使学生了解,理解,掌握并应用!

  第二、注重基础重在实效题目面对大众,不搞偏难怪。让学生“看起来块块,做起来怪怪”,使学生对此类的题不敢掉以轻心,不敢瞧不起“它”。

  第三、进行“小题大做”思想贯彻对于如:计算:

  解题前提问:如何解答?让学生思考并回答。而后我再作答,比较学生刚才他们的思路有何不同。并注:必须按部就班,一步一个脚印,切记应小题大做!不能单有一个答案。

  第四、强化书写格式在解题的过程中,我巡视学生的作题情况,对于发现问题作出及时处理以达到规范。

  第五、同时也存在几个缺点①有的知识点没有顾及到,②有的学生没有自觉在解决问题,③与学生互动不激烈。

  第六、以后的努力①夯实基础②题目靠近中考,让学生了解中考理解中考,实战中考,对其不陌生,觉得中考不过而而。③在授课过程中要精讲多练,多让学生发问,而且也要让学生多多总结,学以致用。

代数式 篇11

  教学目标 

  1.使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;

  2.培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

  教学建议

  1.重点和难点:正确地求出代数式的值。

  2.理解代数式的值:

  (1)一个代数式的值是由代数式中字母的取值而决定的.所以代数式的值一般不是一个固定的数,它会随着代数式中字母取值的变化而变化.因此在谈代数式的值时,必须指明在什么条件下.如:对于代数式 ;当 时,代数式 的值是0;当 时,代数式 的值是2.

  (2)代数式中字母的取值必须确保做到以下两点:①使代数式有意义,②使它所表示的实际数量有意义,如: 中 不能取1,因为 时,分母为零,式于 无意义;如果式子中字母表示长方形的长,那么它必须大于0.

  3.求代数式的值的一般步骤:

  在代数式的值的概念中,实际也指明了求代数式的值的方法.即一是代入,二是计算.求代数式的值时,一要弄清楚运算符号,二要注意运算顺序.在计算时,要注意按代数式指明的运算进行.

  4。求代数式的值时的注意事项:

  (1)代数式中的运算符号和具体数字都不能改变。

  (2)字母在代数式中所处的位置必须搞清楚。

  (3)如果字母取值是分数时,作乘方运算必须加上小括号,将来学了负数后,字母给出的值是负数也必须加上括号。

  5.本节知识结构:

  本小节从一个应用代数式的实例出发,引出代数式的值的概念,进而通过两个例题讲述求代数式的值的方法.

  6.教学建议

  (1) 代数式的值是由代数式里的字母所取的值决定的,因此在教学过程 中,注意渗透对应的思想,这样有助于培养学生的函数观念.

  (2) 列代数式是由特殊到一般, 而求代数式的值, 则可以看成由一般到特殊,在教学中,可结合前一小节,适当渗透关于特殊与一般的辨证关系的思想.

  教学设计示例

  代数式的值(一)

  教学目标 

  1使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;

  2培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

  教学重点和难点

  重点和难点:正确地求出代数式的值

  课堂教学过程 设计

  一、从学生原有的认识结构提出问题

  1用代数式表示:(投影)

  (1)a与b的和的平方;(2)a,b两数的平方和;

  (3)a与b的和的50%

  2用语言叙述代数式2n+10的意义

  3对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)

  某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?

  若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

  最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值这就是本节课我们将要学习研究的内容

  二、师生共同研究代数式的值的意义

  1用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值

  2结合上述例题,提出如下几个问题:

  (1)求代数式2x+10的值,必须给出什么条件?

  (2)代数式的值是由什么值的确定而确定的?

  当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象

  然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应

  (3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?

  下面教师结合例题来引导学生归纳,概括出上述问题的答案(教师板书例题时,应注意格式规范化)

  例1  当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值

  解:当x=7,y=4,z=0时,

  x(2x-y+3z)=7×(2×7-4+3×0)

  =7×(14-4)

  =70

  注意:如果代数式中省略乘号,代入后需添上乘号

  例2  根据下面a,b的值,求代数式a2- 的值

  (1)a=4,b=12,(2)a=1 ,b=1

  解:(1)当a=4,b=12时,

  a2- =42- =16-3=13;

  (2)当a=1 ,b=1时,

  a2- =- =

  注意(1)如果字母取值是分数,作乘方运算时要加括号;

  (2)注意书写格式,“当……时”的字样不要丢;

  (3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:①代入数值②计算结果

  三、课堂练习

  1(1)当x=2时,求代数式x2-1的值;

  (2)当x=,y=时,求代数式x(x-y)的值

  2当a=,b=时,求下列代数式的值:

  (1)(a+b)2;   (2)(a-b)2

  3当x=5,y=3时,求代数式 的值

  答案:1.(1)3;  (2) ;  2.(1) ;(2) ; 3. .

  四、师生共同小结

  首先,请学生回答下面问题:

  1本节课学习了哪些内容?

  2求代数式的值应分哪几步?

  3在“代入”这一步应注意什么”

  其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的.

  五、作业 

  当a=2,b=1,c=3时,求下列代数式的值:

  (1)c-(c-a)(c-b);   (2) .

  代数式的值(二)

  教学目标 

  1.使学生掌握代数式的值的概念,会求代数式的值;

  2.培养学生准确地运算能力,并适当地渗透对应的思想.

  教学重点和难点

  重点:当字母取具体数字时,对应的代数式的值的求法及正确地书写格式.

  难点:正确地求出代数式的值.

  课堂教学过程 设计

  一、从学生原有的认识结构提出问题

  1.用代数式表示:(投影)

  (1)a与b的和的平方;(2) a,b两数的平方和;

  (3)a与b的和的50%.

  2.用语言叙述代数式2n+10的意义.

  3.对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打出投影)

  某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?

  若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

  最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50.我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值.这就是本节课我们将要学习研究的内容.

  二、师生共同研究代数式的值的意义

  1.用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值.

  2.结合上述例题,提出如下几个问题:

  (1)求代数式2n+10的值,必须给出什么条件?

  (2)代数式的值是由什么值的确定而确定的?

  当教师引导学生说出:“代数式的值是由代数式

  里字母的取值的确定而确定的”之后,可用图示帮助

  学生加深印象.

  然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应.

  (3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?

  下面教师结合例题来引导学生归纳,概括出上述问题的答案.(教师板书例题时,应注意格式规范化)

  例1  当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.

  解:当x=7,y=4,z=0时,

  x(2x-y+3z)=7×(2×7-4+3×0)

  =7×(14-4)

  =70.

  注意:如果代数式中省略乘号,代入后需添上乘号.

  解:(1)当a=4,b=12时,

  a2- =42- =16-3=13;   

  注意(1)如果字母取值是分数,作乘方运算时要加括号;

  (2)注意书写格式,“当……时”的字样不要丢;

  (3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数.

  最后,请学生总结出求代数值的步骤:

  ①代入数值  ②计算结果

  三、课堂练习

  1.(1)当x=2时,求代数式x2-1的值;

  2.填表:(投影)

  (1)(a+b)2;  (2)(a-b)2.

  四、师生共同小结

  首先,请学生回答下面问题:

  1.本节课学习了哪些内容?2.求代数式的值应分哪几步?

  3.在“代入”这一步应注意什么?

  其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母,按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的.

  五、作业 

  1.当a=2,b=1,c=3时,求下列代数式的值:

  2.填表

  3.填表

  课堂教学设计说明

  由于代数式的值是由代数式里的字母所取的值决定的,因此在设计教学过程 中,注意渗透对应的思想,这样有助于培养学生的函数观念。

代数式 篇12

  教学目标 

  1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来。

  2.初步培养学生观察、分析和抽象思维的能力。

  3. 通过运用多媒体手段的教学,激发学生学习数学的兴趣,增强学生自主学习的能力。

  教学建议

  1.教学重点、难点

  重点:。

  难点:弄清楚语句中各数量的意义及相互关系。

  2.本节知识结构:

  本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍的方法。

  3.重点、难点分析:

  实质是实现从基本数量关系的语言表述到代数式的一种转化。首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。

  如:用代数式表示:比 的2倍大2的数。

  分析  本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即 的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2 +2.

  4.应注意的问题:

  (1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的运算间的关系。

  (2)弄清运算顺序和括号的使用。一般按“先读先写”的原则。

  (3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。

  (4)在代数式中出现除法时,用分数线表示。

  5.教法建议:

  是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。

  教学设计示例

  教学目标 

  1.  使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;

  2.  初步培养学生观察、分析和抽象思维的能力.

  教学重点和难点

  重点:.

  难点:弄清楚语句中各数量的意义及相互关系.

  课堂教学过程 设计

  一、从学生原有的认知结构提出问题

  1用代数式表示乙数:(投影)

  (1)乙数比x大5;(x+5)

  (2)乙数比x的2倍小3;(2x-3)

  (3)乙数比x的倒数小7;( -7)

  (4)乙数比x大16%((1+16%)x)

  (应用引导的方法启发学生解答本题)

  2在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式本节课我们就来一起学习这个问题

  二、讲授新课

  例1  用代数式表示乙数:

  (1)乙数比甲数大5; (2)乙数比甲数的2倍小3;

  (3)乙数比甲数的倒数小7; (4)乙数比甲数大16%

  分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数

  解:设甲数为x,则乙数的代数式为

  (1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x

  (本题应由学生口答,教师板书完成)

  最后,教师需指出:第4小题的答案也可写成x+16%x

  例2  用代数式表示:

  (1)甲乙两数和的2倍;

  (2)甲数的 与乙数的 的差;

  (3)甲乙两数的平方和;

  (4)甲乙两数的和与甲乙两数的差的积;

  (5)乙甲两数之和与乙甲两数的差的积

  分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式

  解:设甲数为a,乙数为b,则

  (1)2(a+b); (2) a- b; (3)a2+b2;

  (4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)

  (本题应由学生口答,教师板书完成)

  此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律但a与b的差指的是(a-b),而b与a的差指的是(b-a)两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序

  例3  用代数式表示:

  (1)被3整除得n的数;

  (2)被5除商m余2的数

  分析本题时,可提出以下问题:

  (1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?

  (2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

  解:(1)3n;   (2)5m+2

  (这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)

  例4  设字母a表示一个数,用代数式表示:

  (1)这个数与5的和的3倍;(2)这个数与1的差的 ;

  (3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的 的和

  分析:启发学生,做分析练习如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”

  解:(1)3(a+5); (2) (a-1); (3) (5a+7);  (4) a2+ a

  (通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)

  例5  设教室里座位的行数是m,用代数式表示:

  (1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

  (2)教室里座位的行数是每行座位数的 ,教室里总共有多少个座位?

  分析本题时,可提出如下问题:

  (1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

  (2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

  (3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)

  解:(1)m(m+6)个;   (2)( m)m个

  三、课堂练习

  1设甲数为x,乙数为y,用代数式表示:(投影)

  (1)甲数的2倍,与乙数的 的和;  (2)甲数的 与乙数的3倍的差;

  (3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商

  2用代数式表示:

  (1)比a与b的和小3的数;    (2)比a与b的差的一半大1的数;

  (3)比a除以b的商的3倍大8的数; (4)比a除b的商的3倍大8的数

  3用代数式表示:

  (1)与a-1的和是25的数;   (2)与2b+1的积是9的数;

  (3)与2x2的差是x的数;    (4)除以(y+3)的商是y的数

  〔(1)25-(a-1); (2) ;   (3)2x2+2; (4)y(y+3)〕

  四、师生共同小结

  首先,请学生回答:

  1怎样?2的关键是什么?

  其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律:

  (1),要以不改变原题叙述的数量关系为准(代数式的形式不唯一);

  (2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

  (3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备要求学生一定要牢固掌握

  五、作业 

  1用代数式表示:

  (1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

  (2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?

  2已知一个长方形的周长是24厘米,一边是a厘米,

  求:(1)这个长方形另一边的长;(2)这个长方形的面积.

  学法探究

  已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?

  分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看 有没有规律.

  当圆环为三个的时候,如图:

  此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:

  解:

  =99a+b(cm)

代数式 篇13

  摘要

  教案是教师对教学内容,教学步骤,教学方法等进行具体的安排和设计的一种实用性教学文书,都要经过周密考虑,精心设计而确定下来,体现着很强的计划性。在此小编为您整理了数学代数式值备课教案,希望能给教师教学提供参考。

  教学目标

  1.让学生领会代数式值的概念;

  2.了解求代数式值的解题过程及格式

  3.初步领悟代数式的值随字母的取值变化而变化的情况

  教学重点

  培养学生的探索精神和探索能力。

  教学难点

  通过学习使学生了解求代数式的值在日常生活中的应用;

  教学方法

  启发式教学

  教学用具

  教学过程

  集体备课稿 个案补充

  新课引入

  20xx年7月13日,莫斯科时间17:08国际奥委会主席萨马兰奇宣布北京获得20xx年第29届夏季奥运会的主办权。此时此刻举国欢腾,激情飞扬(多媒体展示当时的欢庆场面)。多媒体展示钟表: 北京时间 莫斯科时间

  提出问题:你能根据图示得出北京时间和莫斯科时间的时差为多少?

  如果用 表示莫斯科时间,那么同一时刻的北京时间是多少?

  学生回答: +5

  进一步 提出:国际奥委会主席萨马兰奇宣布北京获 得20xx年第29届夏季奥运会的主办权的北京时间是多少?

  学生回答: +5=17 +5=22 时,即北京时间为22:08 。

  一、 新课过程

  代数式的值:一般地,用数值代替代数式 里的字母,计算后所得的结果叫做代数式的值;例如22 是代数式 +5在 =17 时的值。

  做一做:右图表示同一时刻的东京时间与北京时间 : 东京时间 北京时间

  ⑴、你能根据右图知道北京与东京的时差吗?

  ⑵、设东京时间为 ,怎样用关于东京时间 的代数式 表示同一时刻的北京时间。

  ⑶、20__年世界杯足球赛于6月30日 在日本横滨举行 ,开幕式开始的东京时间为20:00问开幕式开始的北京 时间是几时?

  二、 课内练习

  1、当分别取下列值时,求代数式 的值:⑴ ⑵

  2、当时,求下列代数式的值:⑴ ⑵

  3、当时。

  三、典例分析

  例 1 当n分别取下列值时,求代数式n(n-1)/2的值:

  (1) n=-1 (2)n=4 (3)n=0.6

  解 (1)当n=-1时,n(n-1)/2=(-1)X(-1-1)/2=1

  (2) 当n=4时,n(n-1)/2=4X(4-1)/2=6

  (3) 当n=0.6时,n(n-1)/2=0.6X(0.6-1)/2=-0.12

  注意:负数代入求值时要括号,分数的乘方也要添上括号。

  四、课堂练习

  1、 当x分别取下列值时,求代数式20(1+x%)的值:

  (1) x=40 (2)x=25

  2、 当x=-2,y=-1/3时,求下列代数式的值:

  (1)3y-x (2)|3y+x|

  3、 当x分别取下列值时,求代数式4-3x的值:

  (1) x=1 (2)x4/3 (3)x=-5/6

  4、 当a=3,b=-2/3时,求下列代数式的值:

  (1)2ab (2)a2+2ab+b2

  五、典例分析

  例 2

  小结、布置作业

代数式 篇14

  教学目标

  1.使学生掌握的概念,能用具体数值代替代数式中的字母,求出;

  2.培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

  教学建议

  1.重点和难点:正确地求出。

  2.理解:

  (1)一个是由代数式中字母的取值而决定的.所以一般不是一个固定的数,它会随着代数式中字母取值的变化而变化.因此在谈时,必须指明在什么条件下.如:对于代数式 ;当 时,代数式 的值是0;当 时,代数式 的值是2.

  (2)代数式中字母的取值必须确保做到以下两点:①使代数式有意义,②使它所表示的实际数量有意义,如: 中 不能取1,因为 时,分母为零,式于 无意义;如果式子中字母表示长方形的长,那么它必须大于0.

  3.求的一般步骤:

  在的概念中,实际也指明了求的方法.即一是代入,二是计算.求时,一要弄清楚运算符号,二要注意运算顺序.在计算时,要注意按代数式指明的运算进行.

  4。求时的注意事项:

  (1)代数式中的运算符号和具体数字都不能改变。

  (2)字母在代数式中所处的位置必须搞清楚。

  (3)如果字母取值是分数时,作乘方运算必须加上小括号,将来学了负数后,字母给出的值是负数也必须加上括号。

  5.本节知识结构:

  本小节从一个应用代数式的实例出发,引出的概念,进而通过两个例题讲述求的方法.

  6.教学建议

  (1) 是由代数式里的字母所取的值决定的,因此在教学过程中,注意渗透对应的思想,这样有助于培养学生的函数观念.

  (2) 列代数式是由特殊到一般, 而求, 则可以看成由一般到特殊,在教学中,可结合前一小节,适当渗透关于特殊与一般的辨证关系的思想.

  教学设计示例

  (一)

  教学目标

  1使学生掌握的概念,能用具体数值代替代数式中的字母,求出;

  2培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

  教学重点和难点

  重点和难点:正确地求出

  课堂教学过程设计

  一、从学生原有的认识结构提出问题

  1用代数式表示:(投影)

  (1)a与b的和的平方;(2)a,b两数的平方和;

  (3)a与b的和的50%

  2用语言叙述代数式2n+10的意义

  3对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)

  某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?

  若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

  最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,是40;当n=20时,是50我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值这就是本节课我们将要学习研究的内容

  二、师生共同研究的意义

  1用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做

  2结合上述例题,提出如下几个问题:

  (1)求代数式2x+10的值,必须给出什么条件?

  (2)是由什么值的确定而确定的?

  当教师引导学生说出:“是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象

  然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应

  (3)求可以分为几步呢?在“代入”这一步,应注意什么呢?

  下面教师结合例题来引导学生归纳,概括出上述问题的答案(教师板书例题时,应注意格式规范化)

  例1  当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值

  解:当x=7,y=4,z=0时,

  x(2x-y+3z)=7×(2×7-4+3×0)

  =7×(14-4)

  =70

  注意:如果代数式中省略乘号,代入后需添上乘号

  例2  根据下面a,b的值,求代数式a2- 的值

  (1)a=4,b=12,(2)a=1 ,b=1

  解:(1)当a=4,b=12时,

  a2- =42- =16-3=13;

  (2)当a=1 ,b=1时,

  a2- =- =

  注意(1)如果字母取值是分数,作乘方运算时要加括号;

  (2)注意书写格式,“当……时”的字样不要丢;

  (3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:①代入数值②计算结果

  三、课堂练习

  1(1)当x=2时,求代数式x2-1的值;

  (2)当x=,y=时,求代数式x(x-y)的值

  2当a=,b=时,求下列:

  (1)(a+b)2;   (2)(a-b)2

  3当x=5,y=3时,求代数式 的值

  答案:1.(1)3;  (2) ;  2.(1) ;(2) ; 3. .

  四、师生共同小结

  首先,请学生回答下面问题:

  1本节课学习了哪些内容?

  2求应分哪几步?

  3在“代入”这一步应注意什么”

  其次,结合学生的回答,教师指出:(1)求,就是用数值代替代数式里的字母按照代数式的运算顺序,直接计算后所得的结果就叫做;(2)是由代数式里字母所取值的确定而确定的.

  五、作业 

  当a=2,b=1,c=3时,求下列:

  (1)c-(c-a)(c-b);   (2) .

  (二)

  教学目标

  1.使学生掌握的概念,会求;

  2.培养学生准确地运算能力,并适当地渗透对应的思想.

  教学重点和难点

  重点:当字母取具体数字时,对应的的求法及正确地书写格式.

  难点:正确地求出.

  课堂教学过程设计

  一、从学生原有的认识结构提出问题

  1.用代数式表示:(投影)

  (1)a与b的和的平方;(2) a,b两数的平方和;

  (3)a与b的和的50%.

  2.用语言叙述代数式2n+10的意义.

  3.对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打出投影)

  某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?

  若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

  最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,是40;当n=20时,是50.我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值.这就是本节课我们将要学习研究的内容.

  二、师生共同研究的意义

  1.用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做.

  2.结合上述例题,提出如下几个问题:

  (1)求代数式2n+10的值,必须给出什么条件?

  (2)是由什么值的确定而确定的?

  当教师引导学生说出:“是由代数式

  里字母的取值的确定而确定的”之后,可用图示帮助

  学生加深印象.

  然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应.

  (3)求可以分为几步呢?在“代入”这一步,应注意什么呢?

  下面教师结合例题来引导学生归纳,概括出上述问题的答案.(教师板书例题时,应注意格式规范化)

  例1  当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.

  解:当x=7,y=4,z=0时,

  x(2x-y+3z)=7×(2×7-4+3×0)

  =7×(14-4)

  =70.

  注意:如果代数式中省略乘号,代入后需添上乘号.

  解:(1)当a=4,b=12时,

  注意(1)如果字母取值是分数,作乘方运算时要加括号;

  (2)注意书写格式,“当……时”的字样不要丢;

  (3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数.

  最后,请学生总结出求代数值的步骤:

  ①代入数值  ②计算结果

  三、课堂练习

  1.(1)当x=2时,求代数式x2-1的值;

  2.填表:(投影)

  (1)(a+b)2;  (2)(a-b)2.

  四、师生共同小结

  首先,请学生回答下面问题:

  1.本节课学习了哪些内容?2.求应分哪几步?

  3.在“代入”这一步应注意什么?

  其次,结合学生的回答,教师指出:(1)求,就是用数值代替代数式里的字母,按照代数式的运算顺序,直接计算后所得的结果就叫做;(2)是由代数式里字母所取值的确定而确定的.

  五、作业 

  1.当a=2,b=1,c=3时,求下列:

  2.填表

  3.填表

  课堂教学设计说明

  由于是由代数式里的字母所取的值决定的,因此在设计教学过程中,注意渗透对应的思想,这样有助于培养学生的函数观念。

代数式 篇15

  1.教学目标:

  1) 知识与技能目标:

  ① 让学生经历代数式概念的产生过程,了解代数式的概念.

  ② 使学生会用代数式表示简单的数量关系,并能运用代数式这一数学模型去表示和解释简单实际问题中的数量关系.

  2) 过程与方法目标:

  ① 使学生在探索与创造的数学学习活动中,学会与人合作、与人交流. ② 通过自主探索、小组合作、互相交流数学活动,让学生体验如何进行数学学习,变“学会”为“会学”.

  3) 情感与态度目标:

  ① 渗透代数式的模型思想,让学生体会数学知识来源于实践又反作用于实践的辩证唯物主义思想,进一步发展符号感.

  ② 激发学生探究数学的兴趣,发扬合作学习的精神,养成踏实细致、独立思考、严谨科学的学习习惯.

  ③ 利用实际情境,渗透爱国主义教育和乡土文化教育,培养学生关注生活,热爱数学的情感,增进学生对数学的理解和应用数学的信心.

  2、教学重、难点:

  1) 教学重点:代数式的概念和列代数式. 突出重点措施:

  (1)通过比较――判别――交流――构造等环节,让学生经历代数式概念的产生过程,使学生在过程中获得对数学概念的理解.

  (2)通过“根据语言表述的数量关系列代数式”和“把代数式表示的数量关系

  2) 教学难点:用代数式表示实际问题中的数量关系. 突破难点策略:

  (1)分三步分散难点

  ①引入时设计大量学生身边的实际情景,让学生体会到代数式存在的普遍性.②让学生给自己构造的一些简单代数式赋予实际意义,使学生进一步体会到代数式的模型思想。③通过“开动脑筋齐探索”和“返程路上解疑问”等环节进一步提高学生分析、解决实际问题的能力.

  (2)通过FLASH演示情景,小组合作交流等形式突破代数式的应用瓶颈.用语言表述”两方面进行对比、观察、归纳,让学生获得必需的数学经验.

221381
领取福利

微信扫码领取福利

代数式(精选15篇)

微信扫码分享