第一单元《方程》单元练习讲评(精选15篇)
第一单元《方程》单元练习讲评 篇1
第一单元《方程》单元练习讲评
主备人:孙丽萍
教学内容:
讲评单元练习卷及进行补充练习
教学目标:
1、进一步理解并掌握形如ax±b=c、ax÷b=c和ax±bx=c等方程的解法;能在具体情境中应用上述方程解决相关的两、三步计算的实际问题;会对列方程解决问题的过程进行检验。
2、能在列方程解决实际问题的过程中,主动进行分析、比较、抽象和概括;能有条理地表达列方程解决实际问题的思考过程,抽象能力和符号感得到相应的发展。
3、应用方程的思想方法解决实际问题的意识进一步增强;能利用画图、列表的方法理解有关的实际问题,感受解决问题策略的多样性;能主动反思列方程解决问题的过程,并适当解释结果的合理性。
4、乐于与他人合作交流;进一步培养自觉检验的习惯;获得一些成功的体验,并进一步树立学好数学的自信心。
教学对策:
请学生分析自己的练习情况,反思存在问题,思考如何改进;教师适当点拨、引导、帮助,及时鼓励。
教学准备:
投影片或小黑板
教学过程:
一、单元练习情况分析
1、教师向学生分析班级总体练习情况,及时表扬有关学生并指出存在问题。
2、学生同桌交流自己练习中存在问题及原因,思考如何应对。
3、教师选择较普遍的问题进行解析,主要是以下题目:
(1)三个连续的偶数,最小一个是a,另外两个分别是( )、( )。
(2)京、沪线全长s米,火车从北京开往上海,每小时行v千米,用了t小时到达。写出表示时间的式子( )。
(3)已知小方的票数是小明的3倍,如果小方有邮票x张,那么小明有邮票( )张;如果小明有邮票y张,那么小方有邮票( )张。
(4)解方程:17.2 3-10x=9.6 、5x÷15=15
(5)列方程解决实际问题:
a.一个房间用方砖铺地,如果用面积是0.09平方米的方砖需要480块,现在改用边长0.4米的方砖,需要多少块?
本题主要引导学生分析用不同规格的方砖铺地是什么没有变,根据哪个等量关系来列方程。
b.去年爸爸比小明大25岁,明年爸爸的年龄是小明的6倍。今年爸爸和小明各多少岁?
本题主要引导学生分析两人的年龄差一直不变,所以再根据明年两人年龄之间的倍数关系可以先列方程求出明年爸爸和小明的年龄,最后求今年爸爸和小明的年龄各是多少。
c.小红和小强进行跑步练习,小红每秒跑6米,小强每秒跑8米。如果小强站在200米跑道的起点处,小红站在他前面50米处,两人同时同向起跑,几秒后小强追上小红?
本题主要引导学生分析当小强追上小红时,两人所跑的路程之间存在怎样的关系,理解小强追上小红时比小红多跑了50米。
二、补充练习
1、解方程。
1.5x+14÷5.6=37 7x-5.8x=7.9-4.6 x-0.25x=0.3 32+6x=50
2、列方程解决实际问题(先说出每题的数量关系再列方程解答)。
(1)小光的储蓄罐里现有18元,如果他每周放进储蓄罐3元,多少周后储蓄罐里共有45元?
(2)京杭大运河全长1794千米,比苏伊士运河全长的10倍还多74千米。苏伊士运河全长多少千米?
(3)青山小学组织学生植树。六年级植树的棵数是四年级的3倍,六年级比四年级多植树24棵。两个年级各植树多少棵?
(4)今年妈妈比小红大25岁,去年妈妈的年龄是小红的5倍,明年妈妈和小红各多少岁?
课后反思:
今天的数学课上,我推心置腹地和两个班的学生进行了谈话,内容关于本次单元练习的情况分析。在六(4)班里,我用鼓励的话语表扬了学生们,对他们取得的成绩表示肯定,同时又指出他们还存在的问题,希望他们积极改进。走进六(1)班,我用很诚恳的语气和学生们进行交流,希望他们把自己的聪明才智用在学习上并下决心改掉身上的不良习惯,奋起直追赶上六(4)班。
由于课前我认真分析了学生练习中存在的普遍问题,所以课堂上我组织学生围绕错误较多的问题进行了讨论,要求学生思考自己在练习过程中出现的错误原因是什么,该怎样正确思考。用了整整一节课的时间对这次练习进行了较为详细的讲评,随后学生认真进行了订正,从订正情况看,课堂上听课效率还算不错。
两个班中都有几位学习特别困难的学生,这几天需要和他们的家长及时取得联系,沟通一下,让家长及时了解开学一周来孩子的学习状况,一起来探讨孩子的教育问题。
第一单元《方程》单元练习讲评 篇2
一、仔细看题,认真填空(24分)
1、在15-x=8,75=35,x÷0.9=1.8,4x,79<8.3x,15x=75中,是方程
有 ,是等式有 。
2、x-30=8,那么x=( ),x÷5=( )。
3学校买了8个篮球,每个x元,总共付出240元,3x表示( ),240-4x表示( )。
4、小芳坐在班上的第1列、第5行,用数对表示是( );小花坐的位置用数对表示是( 2,3),他坐在第( )列、第( )行。
5、表示出下面数量间相等的关系式
(1)某班男生人数比女生人数多7人( )
(2)篮球的个数是足球个数的4倍( )
(3)梨树比苹果树的3倍多15棵( )
6、在( )里填上“>”、“<”或“=”
①当a=23时,a+13( )87
②当x=0.8时,x÷2( )0.4
③当y=2时,5y( )100
④当x=9.6时,x-3.8( )3.8
7、天平左边的盘里放2个梨,右边盘里放一个梨和3个桃,天平两边平衡. 1个梨和( )个桃同样重.
8、天平左边的盘里放一个苹果和3个梨,右边盘里放5个梨,天平两边平衡.( )个梨和一个苹果同样重.
二、认真辨析,仔细判断(10分)
1、因为5+x中含有未知数x,所以这个式子是方程。-----------( )
2、等式的两边同时乘或除以一个数,所得的结果仍然是等式。--------( )
3、在平面图上,数对(8,3)表示第8行第3列。------------------( )
4、含有未知数的式子是方程------------------------------------( )
5、方程一定是等式,等式不一定是方程。---------------------------( )
三,选择题(10分)
1、下面式子中不是方程的是( )
a、245=3m b、2x+13=3x-16 c、15=56÷2
2、3个连续自然数的和是99,中间的数是x,其余两个数分别是( )
a、33 31 b、32 33 c、33 34 d、32 34
3、如果5个连续奇数的和是55,中间的数是n,n为( )
a、11 b、10 c、9 d、13
4、甲数是20,比乙数的5倍少5,乙数是( )
a、5 b、3 c、4
5、爸爸今年x岁,妈妈今年x-2岁,10年后,他们相差( )岁。
a、12 b、2 c、8
四.解方程,最后一小题请写出检验过程。(18分)
0.3 x=7.2 x÷14=98 0.8+x=9.1
x-257=582 1.5 x=4.5 x-105=15
五、列方程解答下列问题。(每题7分,共28分)
1.钢琴的黑键有48个,比白键少26个。白键有多少个?
2.小红今年重36千克,比去年增加了2.5千克,她去年的体重是多少千克?
3.一种饮料有两种包装规格,大瓶容量是小瓶的5倍,大瓶容量是1.5升,小瓶容量多少升?
4、小红今年重36千克,比去年增加了2.5千克,她去年的体重是多少千克?
六、根据数量关系列出方程。(每题2分,共10分)
1.男生有x人,女生的人数是男生的1.2倍,男女生一共有440人。
2.图书馆原有图书1500套,借出x套后,又进了200套,图书馆这时有图书900套。
3.小明今年x岁,爸爸今年42岁,3年后爸爸比小明大27岁。
4.篮球每只m元,排球每只n元,学校用1200元刚好购买了8只篮球和12只排球。
5.第一根绳子长a米,第二根绳子长13米,第二根的长度比第一根的2倍还要多6米。
第一单元《方程》单元练习讲评 篇3
教学内容:教科书第6页练习一的第7~12题。 教学目标: 1、通过练习,使学生进一步体会方程的意义及等式的性质。 2、通过练习,使学生能根据等式的性质,正确地解方程及检验。 3、使学生在学生与探索的过程中进一步培养独立思考、主动与他人合作交流、自动检验等习惯,并获得成功的体验,树立进一步学好数学的信心。 教学过程: 一、基础知识 1、说出下面的式子哪些是方程,哪些不是,为什么? 18+17=35 12-a=4 x+12=38 45-x<30 x=14+28 45-13=x+16 2、当x=18时,是下面哪几个方程的解。 18+x=18 18-x=0 x+15=33 x-10=8 x-18=18 x+3=18+3 说说自己的思考方法。 二、指导练习 1、完成练习一第7题。 (1)学生独立完成计算。 (2)这里的方程与前面所学解方程的过程比较有什么不同? 省略了什么? 这样写有什么优点? 在解方程时,先在头脑中想好方程两边应同时加上或减去什么数,但书写时可以省略。同学们在解方程时可以照这种方法解。 2、完成练习第8题。 (1)学生独立完成,要按照上一题的方法适当省略,简化过程。 (2)集体核对,说说自己的解题思路。 3、完成练习一第9题。 知道每题错在哪里吗?错误的原因是什么? 应该怎样改正呢? 独立完成改错。 4、完成练习一第10题。 (1)学生独立完成。 (2)在小组中交流,每人选择一题说思考方法。 (3)错误汇报。 说说错误的原因与正确方法。 5、完成练习一第11题。 根据图意怎样列方程?(x+10=50+20) 应该先算哪一步? 方程右边两个数可以相加,应该先加起来。 第2题怎样列方程? 独立完成解答,集体核对。 6、完成练习一第12题。 “两人用去的钱同样多”什么意思? 你能用一种方法来表示题中的相等关系吗? (1本练习本+3枝铅笔=7枝铅笔) 你看出了什么?(1本练习本相当于4枝铅笔) 三、课堂总结 通过本节课的练习,你有什么收获? 你认为解决数学问题时,方程用处大吗?
第一单元《方程》单元练习讲评 篇4
本单元教学方程的知识,是在四年级(下册)“用字母表示数”的基础上编排的。第一次教学方程,涉及的基础知识比较多,教学内容分成三部分编排。
第1~2页教学等式的含义与方程的意义,根据直观情境里的等量关系列方程。
第3~11页教学等式的性质,解方程,列方程解答一步计算的实际问题。
第12~14页全单元内容的整理与练习。
本单元编排的一篇“你知道吗”简要介绍了我国古代就有方程的思想,并有运用方程解决实际问题的历史记载。
1 从等式到方程,逐步构建新的数学知识。
方程是等式里的一类特殊对象,教材用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义。
(1) 借助天平体会等式的含义。
等式是方程的生长点,学生在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,本单元教材首先让学生体会等式的含义。
天平两臂平衡,表示两边的物体质量相等;两臂不平衡,表示两边物体的质量不相等。让学生在天平平衡的直观情境中体会等式,符合学生的认知特点。例1在天平图下方呈现“=”,让学生用等式表达天平两边物体质量的相等关系,从中体会等式的含义。教材使用了“质量”这个词,是因为天平与其他的秤不同。习惯上秤计量物体有多重,天平计量物体的质量是多少。教学时不要把质量说成重量,但不必作过多的解释。
例2继续教学等式,教材的安排有三个特点: 第一,有些天平的两臂平衡,有些天平两臂不平衡。根据各个天平的状态,有时写出的是等式,有时写出的不是等式。学生在相等与不等的比较与感受中,能进一步体会等式的含义。第二,写出的四个式子里都含有未知数,有两个是含有未知数的等式。这便于学生初步感知方程,为教学方程的意义积累了具体的素材。第三,写四个式子时,对学生的要求由扶到放。圆圈里的关系符号都要学生填写,学生在选择“=”“>”或“<”时,能深刻体会符号两边相等与不相等的关系;符号两边的式子与数则逐渐放手让学生填写,这是因为他们以前没有写过含有未知数的等式与不等式。
(2) 教学方程的意义,突出概念的内涵与外延。
“含有未知数”与“等式”是方程意义的两点最重要的内涵。“含有未知数”也是方程区别于其他等式的关键特征。在第1页的两道例题里,学生陆续写出了等式,也写出了不等式;写出了不含未知数的等式,也写出了含有未知数的等式。这些都为教学方程的意义提供了鲜明的感知材料。教材首先告诉学生: 像x+50=150、2x=200这样含有未知数的等式叫做方程,让他们理解x+50=150、2x=200的共同特点是“含有未知数”,也是“等式”。这时,如果让学生对两道例题里写出的50+50=100、x+50>100和x+50<200不能称为方程的原因作出合理的解释,那么学生对方程是等式的理解会更深刻。教材接着安排讨论“等式和方程有什么关系”,并通过“练一练”第1题让学生先找出等式,再找出方程,理解等式与方程这两个概念之间的包含与被包含关系。即方程都是等式,但等式不都是方程。这道题里有以x为未知数的等式,也有以y为未知数的等式,使学生对“未知数”有正确的理解,防止把未知数局限为x,把方程狭隘地理解为“含有x的等式”。“练一练”第2题要求学生自己写出一些方程并相互交流,让它们在写方程时关注方程的本质属性,从而巩固方程的概念。
(3) 用方程表示直观情境里的相等关系。
第2页的“试一试”和“练一练”第3题都是看图列方程,编排这些题的目的是培养学生发现和理解现实情境里的等量关系的能力,体会方程是表示等量关系的数学方法,从而进一步巩固方程的概念,并为以后列方程解决实际问题打下扎实的基础。这些内容在编排上有两个特点: 一是直观情境的呈现从天平图开始,发展到带括线的图画。带括线的图画在一年级(上册)就出现了,学生比较熟悉。但是,从列算式求答案的习惯思维转向列方程表示等量关系,仍然会有困难。因此,教材先让学生看天平图列方程。天平两臂平衡,表示它左右两边物体的质量相等,已经在两道例题里教学得很充分了,看天平图列方程能让学生初步知道什么是列方程和怎样列方程,对依据什么列方程和列出的方程表示什么有所体验。 在此基础上,过渡到列方程表示带括线的图画里的等量关系,会平稳得多。二是带括线的图画里的等量关系,突出两个或几个部分数相加是它们的总数。在几个部分数相同时,它们相加用乘法比较简便。这些关系是数量之间最基本的关系。而且这些关系建立在加法和乘法的意义上,学生容易理解。如文具盒的价钱加笔记本的价钱一共20元,买4本同样的故事书一共要16.8元,列出的方程分别是12+x=20和4x=16.8。如果少数学生列出的方程是20-x=12或16.8÷x=4也是可以的,但不宜提倡;绝不能列出20-12=x、16.8÷4=x这样的方程。因为后者仍然是过去列算式的思路,不利于学生体会数量间的相等关系,对以后的教学也是有弊无利的。
2 利用等式的性质解方程。
在过去的小学数学教材里,学生是应用四则计算的各部分关系解方程。这样的思路只适宜解比较简单的方程,而且和中学教材不一致。《标准》从学生的长远发展和中小学教学的衔接出发,要求小学阶段的学生也要利用等式的性质解方程。因此,本单元安排了关于等式性质的内容,分两段教学: 第一段是等式的两边同时加上或减去同一个数,结果仍然是等式;第二段是等式的两边同时乘或除以同一个不等于零的数,结果仍然是等式。在每一段教学等式的性质以后,都及时让学生运用等式的性质解方程。
(1) 在直观情境中,按“形象感受→抽象概括”的方式教学等式的性质。
教材仍然用天平的直观情境教学等式的性质。因为在两臂平衡的天平上,左右两边物体的质量发生相同的变化,天平的两臂仍然保持平衡。这种现象能形象地表示等式的性质,有利于学生的直观感受。
例3教学等式的一个性质。教材设计了四组天平图,每组左边的天平图表示变化前的等式,右边的天平图表示变化后的等式,从左边的等式到右边的等式,反映了等式的性质。上面的两组图揭示的是等式的两边都加上一个相同的数,仍然是等式;下面的两组图揭示的是等式的两边都减去相同的数,仍然是等式。四组图的内容综合起来就是等式的一个性质。教材精心设计每组天平上物体的质量,第一组图写出的是不含未知数的等式,在左边的天平表示20=20以后,右边天平的两边各加1个10克的砝码,看图填写20+○20+。学生在两个括号里都写“10”,在圆圈里写“=”,联系天平两边各加10克都变成30克,而天平仍然平衡的现象,体会填写的等式是合理的。这样就首次感知了等式的两边都加上同一个数,结果仍是等式。第二组图写出的是含有未知数的等式,从x=50到x+20=50+20的变化和比较中,对等式两边都加上相同的数有进一步的感受。第三组图写出的等式两边都用字母a表示砝码的质量,圈出a克砝码并画上箭头,表示去掉它的意思。联系已有经验,这里的a代表许多个数,这组天平图与等式概括了众多等式两边减去相同数的情况。第四组图在方程x+20=70的两边都减去20,不但又一次表示了等式性质,而且与解方程的方法十分接近。
另外,这道例题的8个等式中,有7个让学生在圆圈里填写“=”组成等式,这是引导学生切实关注等式有没有变化。右边的四个等式分别让学生在括号里填出同时加上或减去的数,有利于发现等式的性质。
例5教学等式的另一个性质。教材注意利用学生前面学习等式性质的经验,在感知天平的直观情境表示出等式性质的一个实例后,再让学生写一个等式,通过比较、概括与交流,得出“等式的两边都乘或除以相同的数,结果仍然是等式”的结论。教学时有两点应注意: 一是让学生正确理解图意。上面一组天平图的左边原来是一个质量为x克的物体,又添上一个质量相同的物体;右边原来是一个20克的砝码,又添上一个同样的砝码。这表示天平左右两边物体的质量都乘2。下面一组天平图左边原来是3个质量都为x克的物体,现在只剩下1个这样的物体;右边原来是3个20克的砝码,现在只剩下1个20克的砝码。这表示天平左右两边物体的质量都除以3。二是等式两边同时除以的那个数不能是0,这一点学生能够接受。因为前面的教学中,已经多次提到除数不能是0。
(2) 应用等式的性质解方程。
例4和例6教学解方程,解方程的关键是方程的两边都加(减)几、乘(除以)几,教材对此有精心的设计。例4看图列出方程,学生先从图中能得到求x值的启示: 只要在天平的左右两边各去掉10克的砝码。联系等式的性质与方程x+10=50的特点,理解“方程两边都减去10”的道理: 等式的两边都减去10,左边就剩下x,x的值只要通过右边的计算就能得到。例6在列出方程以后,让学生联系已有的解方程经验和有关的等式性质,思考“方程两边都要除以几”这个问题,并解这个方程。这些设计都体现了从学生实际出发,让学生主动学习的教育理念。另外,例4的编写还注意了三点: 一是示范了解方程的书写格式,强调等式变换时,各个等式的等号要上下对齐,教学时必须严格遵循;二是求得x=40后,通过“是不是正确答案”的质疑,引导学生根据“左右两边是不是相等”进行检验;三是在回顾反思求x值的过程基础上,讲了什么是“解方程”。这些都是以后解方程时反复使用的知识。
帮助学生逐渐掌握解方程的方法并形成相应的技能,是教材编写时认真思考的问题。用好教材设计的两道题,能培养学生这方面的能力。一处是第4页“练一练”第1题,为了使方程的左边只剩下x,方程的左边已经加上25(或减去18),右边应该怎样?这是刚开始教学解方程时的设计。通过在方框里填数,在圆圈里填运算符号, 引导学生正确应用等式的性质,体会解方程的策略和思路,理出解方程的关键步骤。学生在方框里填数一般不会有问题,在圆圈里填运算符号可能会出现错误。要通过交流和评价,帮助他们正确掌握方程的两边同时加上或同时减去相同的数。另一处是第6页第7题,简化解方程过程的书写,浓缩思路,是在基本掌握解方程的方法以后安排的。如解方程x-20=30,在方程的两边都加20这一步,省写了虚线框里的内容: x-20+20=30+20,直接写出x=30+20。这样做能使解方程的思考流畅、书写简便,从而提升解方程的能力。教学时要让学生体会简化的过程,重点讨论圆圈里填什么符号、方框里填什么数以及为什么。第8页“练一练”第1题、第10页第2题的编排意图与上面相同。
3 列方程解决实际问题。
本单元解决的都是一步计算的实际问题,其中大多数都是第一学段里没有出现的。这些实际问题如果列算式解答,学生体会其中的数量关系有一定难度;如果用方程的知识解答,利用的是问题中最本质的数量关系,思路就顺畅得多。
列方程解决实际问题的关键是找到问题里的等量关系。列方程时的数量关系与列算式时明显不同。列算式时的数量关系把已知和未知隔裂,已知条件作为一方,要求的问题为另一方,通过已知数量的运算得到未知数量。而列方程的数量关系,把已知和未知融合起来,共同参与运算。寻找等量关系是列方程解决实际问题的教学重点,也是教学的难点。为此,教材作了三步安排。
(1) 教学方程意义的时候,列方程表示简单现象里的等量关系,有第2页“试一试”,“练一练”第3题,练习一第1~3题等。这些简单现象都是学生能够接受的,并以他们熟悉的方式呈现,如天平图、带括线的图画、线段图、图文结合的叙述等。让学生对什么是列方程、怎样列方程,尤其是依据什么列方程、列出的方程表示什么意思有所体会。在寻找等量关系和列方程的时候要注意两点: 一是联系生活经验,按照事情的发生与发展线索,理顺数量关系。如买1件上衣和1条裤子一共用去86元,原有的图书借出56本还剩60本,付出的钱数减电话机的价钱得找回的钱数,妈妈的岁数减小红的岁数得妈妈比小红大的岁数。有了这些等量关系,列方程就方便了。二是暂时不要鼓励对数量关系的发散性思考,也不要提倡列出的方程多样,确保把握和应用事件里的最基本的等量关系。这对以后的教学十分重要。
(2) 教学解方程的时候,渗透列方程解决实际问题的思想。例4求天平左边正方体的质量,例6求长方形试验田的宽,都是先列出方程再求解。这两道例题的教学重点是应用等式性质解方程,以实际问题为载体有两点好处: 一是初步体会列方程是解决实际问题的一种方法,从而发展解决问题的策略;二是继续体会列方程的依据是实际问题里的等量关系。例4的相等关系是天平两边物体的质量相等,学生已经比较熟悉。例6依据长方形面积公式列方程,是对等量关系的一次引导。教学的时候,既不要冲淡例题的教学重点,又要让学生获得这两点体会。
(3) 例7和相配合的“试一试”“练一练”教学列方程解决实际问题,主要解决相差关系和倍数关系的问题。这些实际问题里都有一个关于“相差多少”或“几倍”的已知条件,只要抓住这个条件分析相差数或倍数的具体含义,就能找到实际问题里的等量关系。
首次教学列方程解决实际问题,例7有三个内容: 一是怎样寻找数量间的相等关系,二是这个问题为什么列方程解答,三是列方程解决实际问题的步骤与格式。这三个内容中,第一个最重要,另两个内容都能在第一个内容中得到启示。
这道例题的相等关系“小军的成绩-小刚的成绩=0.06米”,是从“小刚比小军少跳0.06米”得出的。分析这个已知条件,首先想到小刚跳的米数、小军跳的米数与0.06米是三个有关系的数量;接着想到小军跳的米数多,小刚跳的米数少,0.06米是他们跳的米数的差,等量关系就出来了。把文字叙述的相差关系改变成数学式子表示的相等关系,就列出了方程。
“小军的跳高成绩不知道,可以设为x米,再列方程解答”这句话是指着等量关系说的。在等量关系中,两个数量已知,一个数量未知,如果把未知的数量设为x米,很容易列出方程。再通过解方程,就能算出未知的数量。这就是为什么列方程解题的原因,学生体会这一点,也就体会了列方程是解决问题的一种策略。于是,解题活动就在寻找等量关系的基础上,很自然地按照“写设句――列方程――解方程”的顺序进行,列方程解决实际问题的一般步骤由此而得出。
在交流中让学生思考还可以怎样列方程,是因为在分析小军跳的米数多,小刚跳的米数少,他们跳的米数相差0.06米时,学生有可能用“小刚跳的米数+0.06=小军跳的米数”表示等量关系。教材对此表示肯定,并不要求学生一题多解。
“试一试”辅助学生寻找相等关系,在分析“蓝鲸的体重是一头非洲象的33倍”这个条件的基础上,以填空的形式得出等量关系。其他解题活动由学生独立完成,逐渐熟悉列方程解决实际问题的一般步骤。练习中涉及的等量关系有了扩展,如平行四边形的面积公式、正方形的周长公式、单价×数量=总价等,要尽量让学生独立寻找和应用等量关系列方程。
第一单元《方程》单元练习讲评 篇5
教学内容
苏教版《义务教育课程标准实验教科书数学》五年级(下册)第1、2页,练习一第1~3题。
教学目标
1.使学生在具体的情境中,理解方程的含义,初步认识等式与方程的关系。
2.使学生在观察、描述、分类、抽象、概括的过程中,经历将现实问题抽象成式与方程的过程,体会方程是刻画现实世界的数学模型,发展抽象思维。
3.使学生在积极参与数学活动的过程中,感受探索的乐趣,获得成功的体验,增强学好数学的信心。
教学过程
一、认识相等关系,初步理解等式
1.出示例1天平图(两边没有砝码)。
提问:认识天平吗?天平是用来做什么的?
2.在天平的两边加上砝码。
提问:你看懂了什么?
学生可能想到:一边托盘内放了两个重50克砝码,一边放了一个重100克的砝码,两边一样重。
追问:不看两边托盘内放的东西,你知道两边一样重吗?能用语言描述两边物体的质量关系吗?
学生回答后,提问:怎样用数学式子表示两边物体的质量关系?(板书:50+50=100)
追问:为什么用等号连接?
指出:像这样用等号连接的式子,就是等式,表示相等的关系。
二、认识方程
1.出示例2天平图中的指针部分局部图(第一幅图)。
提问:看到这时的指针位置,你有什么想法?如果用式子来表示,还会选用等号写等式吗?为什么?
2.出示完整的天平图。
提问:你能用语言描述两边物体的质量关系吗?怎样用式子表示?(板书:x+50>100)
追问:x表示什么?
3.依次出示例2第二、三幅天平图。
要求:先用语言描述天平两边物体的质量关系,然后用式子表示。
学生口述,教师板书:x+50=150,x+50<200。
4.出示:2x=200。
提问:根据这个式子,想一想天平两边的物体是怎样的?你能描述出来吗?
在学生描述的基础上,出示教材第1页例2的第四幅天平图。
5.将式子分类,认识方程。
引导:我们来看刚才根据天平图所写的几个式子。在黑板上集中呈现5个式子的卡片:
50+50=100x+50>100x+50=150
x+50<2002x=200
谈话:你能把这些式子按照一定的标准进行分类吗?请大家独立思考,再在小组里先说一说。
学生的分类可能出现下面两种情况:
①将式子按照不同的连接方式(大于号、小于号或等号)分成三类。
引导:按照你的理解,你能找出哪些是等式吗?
学生口答,教师请学生根据他们的发言在黑板上移动式子卡片,将式子分类。
指出:根据大家的意见,我们可以把这些式子分成三类,也可以把这些式子分成两类,一类是用等号连接的式子,都是等式;还有一类是用大于号、小于号连接的,都不是等式。
教师对黑板上的卡片位置作如下调整:
50+50=100x+50>100
x+50=150x+50<200
2x=200
②将式子按照是否含有字母x分成两类。
指出:这里用字母x表示未知数。
让学生在黑板上把另一套式子卡片分类排列,并指导学生按下面的方式排列:
50+50=100是否含有未知数
x+50=150
x+50>100
x+50<200
2x=200
在学生交流了两种分类方法之后,教师引导学生对照黑板上所分类的式子卡片思考:你能把两种分类方法综合起来对这些式子进行分类吗?
学生对黑板上的式子进行调整。教师在学生分类的基础上,标注类别序号。
谈话:同学们通过思考、交流,把这些式子分成了四类。请观察这几类式子,说一说每组式子有什么特征?
学生描述后,教师指出:正如你们所描述的,像第③类式子这样,含有未知数的等式是方程。
6.完成“练一练”第1题。
依次出示前三道式子:6+x=16;36-7=29;60+23>70,学生逐一做出是否是方程的判断,并说明理由。(在学生对“60+23>70”做出判断后,教师将这道式子板书在算式卡片的第②类中)
出示第1题的其他式子,学生判断哪些是方程。接着,让学生判断哪些是等式。结合学生的判断,教师指出:方程中的未知数,既可以用x表示,也可以用y表示,还可以用其他字母表示。
反思:根据刚才的练习,你发现等式与方程有什么关系?学生在小组里交流。
在学生交流的基础上,用课件结合“练一练”第1题进行动态演示:先是将所有的等式画上集合圈,再闪烁显示其中的方程式,将方程式画上集合圈,集合圈中的等式渐渐淡化直至消失,出现文字“等式”与“方程”,如右图:
教师引导学生再结合黑板上对式子进行的分类,理解:方程是一类特殊的等式;等式中,一部分是方程。
7.完成“练一练”第2题。
学生写一些方程,再在小组里交流。
三、进一步理解方程的含义,体会方程思想
1.教学“试一试”。
出示“试一试”(图略)。
学生先用语言表述图中告诉了我们什么,数量之间有怎样的相等关系,再列方程。
2.完成“练一练”第3题。
学生先用语言描述图中的等量关系,再列方程。
四、课堂总结(略)
五、课堂作业
练习一第1~3题。
第一单元《方程》单元练习讲评 篇6
教学目标:
1、通过回顾等式、不等式、用字母表示的式子等内容,进一步巩固加深学生对方程的理解和认识。
2、会用方程表示简单的等量关系,会列方程解决简单问题。
3、感受式与方程在解决问题中的价值,培养初步的代数思想。
教学重点:
明确字母表示数的意义和作用;会灵活的用方程解答两步简单的实际问题。
教学难点:
找等量关系式,用方程解决实际问题。
教学过程:
一、导入
我们都记得这首儿歌
一只青蛙一张嘴,两只眼睛四条腿;
两只青蛙两张嘴,四只眼睛八条腿;
请你来接下句
三只青蛙_________;
五只青蛙呢?
N只青蛙呢?
一首小小的儿歌展示了数学的机智和趣味,细心的同学已经发现,这首儿歌不仅融入了数字,还包含着字母,用字母来表示数。我们今天的课就围绕用“字母表示的数”来展开。
二、进行复习
1、用字母表示数
(1)同学们想一想,在数学中有哪些地方常用字母来表示?
生列举:数量关系(路程、速度、时间 即s=vt)
计算公式(长方形面积计算公式:s=ab 圆柱的体积公式:v=sh 等)
运算定律(加法结合律:a+b+c=a+(b+c)等)
(2)请同桌之间相互举两个这样的例子。
(3)你们知道为什么用字母表示数吗?
(4)现在就让我们一起来试一试:请大家翻开课本71页,抓紧时间做一做吧。生自主完成课本(1)~(4)题。师巡视;完成后全班交流答案,重点说一说表示的意义。
(5)现在我把第(4)题做一下修改:一台插秧机上午工作5小时,下午工作3小时,上下午一共插秧160平方米,问:每小时插秧多少平方米?
算法有两种:其一:算术方法:160÷(5+3)=20
依据:总插秧数量÷时间=单位时间量
其二:列方程:x(5+3)=160
依据:单位时间量×时间=总插秧数量
观察比较:以上两种解法有哪些相同点和不同点?
相同点:都是根据数量间的相等关系列式。
不同点:解法一:以已知推出未知,是算术法。
解法二:把未知数用x表示,列出含有未知数的等式,即方程。
同学们想一想,等式和方程有什么联系和区别?
方程有哪些性质呢?(等式 、含有未知数)
2、方程
(1)判断下列哪些是方程(说明理由)
7+8=3×5 4a+5b a+12=89
4x=y 3+100>25+y 6+x=0.5×3
(2)你会解方程吗?从中选择一个试一试。
(3)如何判断方程的解是否正确?
(4)列方程解应用题的解题步骤是怎样的?
讨论后得出:①弄清题意,找出未知数,并用x表示;
②找出应用题中数量之间的相等关系,列方程;
③解方程;
④检验,写出答案。
3、列方程解决问题
(1)在生活中我们经常会遇到一些实际问题,列方程解方程能帮我们很快解决。例如,这副乒乓球拍到底多少元呢?让我们一起来算一算。
请生一起看书71页例一:李老师买下面的球拍,给售货员100元,找回2元,一副乒乓球拍的价钱是多少元?
引导生认真审题,找出等量关系,自己列出方程并求解。交流解题思路。
(2)生尝试自主解决例二:相遇问题。师巡视,请生到黑板完成,全班交流。
(3)练习
①练一练1
②师展示习题:说出下面每组数量之间的相等关系。
(1)女生人数,男生人数,全班人数;
(2)苹果的重量,梨的重量,梨比苹果少的重量。
(3)一辆公共汽车中途到站后,先下去15人,又上来9人,这时车上正好有30人,到站前车上有多少人?
(4)一本书240页,小刚看了5天,还剩165页没看,平均每天看多少页?
③课本练一练5
三、小结
说一说你今天的收获在哪里?
第一单元《方程》单元练习讲评 篇7
教学目的:
1、在解决实际问题的过程中,进一步巩固形如ax+b=c、ax-b=c的方程的解法,同时理解并掌握形如ax÷b=c的方程的解法,会列上述方程解决两步计算的实际问题。
2、提高分析数量关系的能力,培养学生思维的灵活性。
3、在积极参与数学活动的过程中,树立学好数学的信心。
教学重点、难点:
引导学生独立分析问题,找出题目中的等量关系。
教学对策:
在积极参与数学活动的过程中,树立学好数学的信心。
教学准备:
教学光盘
教学过程:
一、复习准备
1、解方程(练习一第6题的第1、3小题)
4x+12=50 2.3x-1.02=0.36
学生独立完成,再指名学生板演并讲评,集体订正。
二、尝试练习
师:刚才的两道题同学们完成得很好,这道题你们还能自己解决吗?试试看。
出示:30x÷2=360
学生独立尝试完成,全班交流。
指名学生说一说,解这个方程是第一步需要做什么?这样做依据了等式的什么性质?
三、巩固练习
1、出示练习一第7题。
(1)分析数量关系
提问:谁来说说三角形的面积公式是怎样的?根据学生回答板书:S=ah÷2。联系这个公式你能找出数量之间的相等关系吗?(生独立思考后在小组内交流)指名口答。你觉得在这些数量关系中,哪一个等量关系适合列方程?根据这个数量关系我们可以列出怎样的方程?板书:1.3x÷2=0.39。
第⑵题生独立思考并列出方程,在小组内说说自己的思考过程后全班交流。板书:3x+18=19.8。
(2)学生独立计算,并检验答案是否正确,全班核对。
小结:在一个实际问题中,可能会有几个不同的等量关系,我们应该选择合适的等量关系来列方程。
2、练习一第8题。
学生读题后可用自己喜欢的方法将与杨树和松树有关的信息分别列表整理(如列表,作标记等)
学生独立解决后再说说数量之间有怎样的数量关系,是根据什么样的数量关系列出的方程,最后核对解方程的过程。(提示学生可从得数的合理性来初步检验)
3、练习一第9题。
学生独立思考,指名分析数量关系,教师结合学生回答画出线段图帮助学生理解题意。
学生独立解方程再集体订正。
4、练习一第10题。
教师简单介绍相关天文知识后,学生独立解答,然后及时交流,教师及时讲评。
5、练习一第11题。
学生读题后教师提问:在本题中出现了两个问题,那么我们在写设句时要注意什么?(提示学生用不同的字母分别表示小亮出生时的身高和体重)
学生独立解决,集体核对。结合学生板演情况进行讲评,进一步规范学生的书写格式。
6、练习一第12题。
提问:你能看懂这张发票上所提供的信息吗?数量间有怎样的等量关系呢
学生独立列方程解答,同桌同学互相检查,再集体订正。
7、练习一第13题。
学生阅读第13题,理解后独立解决问题,再交流。
教师再补充几题,如:98.6、212华氏度相当于多少摄氏度等。
四、全课小结
说一说你这一节课的学习收获及还有什么问题。
五、布置作业
完成配套习题。
第一单元《方程》单元练习讲评 篇8
教学目的:
1、在解决实际问题的过程中,进一步巩固形如ax+b=c、ax-b=c的方程的解法,同时理解并掌握形如ax÷b=c的方程的解法,会列上述方程解决两步计算的实际问题。
2、提高分析数量关系的能力,培养学生思维的灵活性。
3、在积极参与数学活动的过程中,树立学好数学的信心。
教学重点、难点:
引导学生独立分析问题,找出题目中的等量关系。
教学对策:
在积极参与数学活动的过程中,树立学好数学的信心。
教学准备:
教学光盘
教学过程:
一、复习准备
1、解方程(练习一第6题的第1、3小题)
4x+12=50 2.3x-1.02=0.36
学生独立完成,再指名学生板演并讲评,集体订正。
二、尝试练习
师:刚才的两道题同学们完成得很好,这道题你们还能自己解决吗?试试看。
出示:30x÷2=360
学生独立尝试完成,全班交流。
指名学生说一说,解这个方程是第一步需要做什么?这样做依据了等式的什么性质?
三、巩固练习
1、出示练习一第7题。
(1)分析数量关系
提问:谁来说说三角形的面积公式是怎样的?根据学生回答板书:S=ah÷2。联系这个公式你能找出数量之间的相等关系吗?(生独立思考后在小组内交流)指名口答。你觉得在这些数量关系中,哪一个等量关系适合列方程?根据这个数量关系我们可以列出怎样的方程?板书:1.3x÷2=0.39。
第⑵题生独立思考并列出方程,在小组内说说自己的思考过程后全班交流。板书:3x+18=19.8。
(2)学生独立计算,并检验答案是否正确,全班核对。
小结:在一个实际问题中,可能会有几个不同的等量关系,我们应该选择合适的等量关系来列方程。
2、练习一第8题。
学生读题后可用自己喜欢的方法将与杨树和松树有关的信息分别列表整理(如列表,作标记等)
学生独立解决后再说说数量之间有怎样的数量关系,是根据什么样的数量关系列出的方程,最后核对解方程的过程。(提示学生可从得数的合理性来初步检验)
3、练习一第9题。
学生独立思考,指名分析数量关系,教师结合学生回答画出线段图帮助学生理解题意。
学生独立解方程再集体订正。
4、练习一第10题。
教师简单介绍相关天文知识后,学生独立解答,然后及时交流,教师及时讲评。
5、练习一第11题。
学生读题后教师提问:在本题中出现了两个问题,那么我们在写设句时要注意什么?(提示学生用不同的字母分别表示小亮出生时的身高和体重)
学生独立解决,集体核对。结合学生板演情况进行讲评,进一步规范学生的书写格式。
6、练习一第12题。
提问:你能看懂这张发票上所提供的信息吗?数量间有怎样的等量关系呢
学生独立列方程解答,同桌同学互相检查,再集体订正。
7、练习一第13题。
学生阅读第13题,理解后独立解决问题,再交流。
教师再补充几题,如:98.6、212华氏度相当于多少摄氏度等。
四、全课小结
说一说你这一节课的学习收获及还有什么问题。
五、布置作业
完成配套习题。
教后反思:
本课时是一节练习课,练习目标有两个,一是通过练习让学生掌握形如ax+b=c和ax-b=c的方程的解法,会列方程解决两步计算的实际问题;二是借助一些对比练习,让学生感受方程的思想方法和价值。课前,我学习了高教导的“课前思考”,在今天的练习课中补充了两组题目,让学生进行对比练习。题目是这样的:(1)果园里有桃树60棵,比梨树的3倍少6棵,梨树有多少棵?(2)果园里有梨树60棵,比桃树的3倍少6棵,桃树有多少棵?课堂上,我先请学生分析每一题的数量关系,然后选择合适的方法来解答。学生们经过分析、比较,发现类似第1小题这样的题目适合用方程解,类似第2小题这样的题目适合用算术方法解。另一组补充的题目是:(1)王老师买了3个足球,付了200元,找回8元。每个足球多少元?(2)水果店运进5箱苹果,卖出56千克,还剩34千克。每箱苹果多少千克?对于这两题,我请学生认真分析数量关系后用自己喜欢的方法来解答,而且如果是列方程的话,试着列出不同的方程;如果是用算术方法解的可以列出不同的算式。课堂上学生思维活跃,在正确分析数量关系后列出了不同的方程或算式。
通过本节练习课,我想教师在教学中要更多地指导学生关注怎样从一个个具体的问题情境中分析数量之间的相等关系,关注怎样根据数量关系列出方程,从而在经历实际问题数学化的过程中,获得对用方程解决实际问题策略的体验,进一步丰富学生解决问题的策略,加深学生对方程作为一种重要的数学思想方法的理解。
第一单元《方程》单元练习讲评 篇9
教学目标:
1.系统地掌握有关用字母表示数、方程的基础知识,并用方程解决生活中的实际问题。
2.培养和提高学生的学习能力。
教具准备:
自制幻灯片课件。
教学过程:
一、创设情境。
1.(课件出示)学校买来个9足球,每个a元,买来b个篮球,每个58元。
2.让学生根据出示的信息,提出数学问题。
学生可能提出以下问题
(1)9个足球多少钱?
(2)b个篮球多少钱?
(3)篮球的单价比足球的单价多多少钱?
(4)篮球和足球一共多少钱?
3.学生说出怎样表达这些问题的结果。(教师板书)
4.引导学生观察黑板上的式子,看一看有什么特点?
二、系统整理
1.提问:我们除了学过用字母标示数量关系外,还学过用字母表示什么?
(让学生以小组为单位,合作整理学过的运算定律和计算公式。)
2.引导学生交流小组整理的结果。教师板书
a+b=b+a v=sh
a+(b+c)=(a+b)+c v=abh
a×b=b×c s=ab
a×(b×c)=(a×b) ×c s=ah
a×(b+c)=a×b+a×c ……
运算定律 计算公式
3.在书写数字与这字母相乘、字母与字母相乘时,应注意什么?
完成84页上做一做的内容。
4.启发学生谈一谈,用字母表示数、表示数量关系有什么作用?
5.在用字母表示数的过程中,我们 认“x”表示什么样的数?
6.让学生填空:含有未知数的等式叫做( )
求“x”值的过程叫做( )
7.让学生说说解方程的依据是什么?
8.学生解方程并订正结果。
9.通过列方程和解方程,可以解决很多生活中的实际问题。下面请同学们看屏幕。
10.(课件出示)学校组织远足活动。计划每小时走3.8千米,3小时到达目的地。实际2.5小时走完了原定路程,平均每小时走了多少千米?
11.学生独立解决问题,教师课堂巡视,了解学生解决问题情况。
12.班内交流结果。并让学生将解题过程演板。
13.谈一谈在用方程解决问题的过程中,应注意什么?
三、归纳小结。
1.让学生说一说这节课我们对哪项知识做了复习和整理?
2.师:有一部分同学在解题的过程中,不习惯用方程解,老师建议大家,为了更好的与中学接轨,要多尝试用方程解,而且你一定会领悟到方程得简明和方便。
四、实践应用。
1.完成85页练习十五的习题。
2. 填空
(1)小华每分钟跑a米,6分钟跑( )米。
(2)三个连续的偶数,中间一个是M,另外两个是( )和( )。
(3)用字母表示三角形的面积计算公式是( )。如果a=4厘米,b=3厘米,则三角形的面积是( )。
(4)老王今年a岁,小林今年(a-18)岁,再过18年,他们相差( )岁。
(5)一堆煤,有a吨,烧了6天。平均每天烧b吨,还剩( )吨。
2、判断
(1)含有未知数的式子叫方程。( )
(2)方程一定是等式,等式一定是方程。( )
(3)6x=0是方程。( )
(4)因为a×6可以写成a・6,所以7×6可以写成7・6。( )
3、下面的式子中,哪些是方程?
(1)5x (2)6x+1=6
(3)15-3=12 (4)4x+1<9
4、解方程
2x+9=27 x-0.5= 8+0.3x=14
8x-3×9=37 22.3x+11x=66.6 x- x=12
(要求学生以竞赛的形式进行计算)
5、趣味数学城
(1)、一只青蛙一张嘴,两只眼睛四条腿。
两只青蛙两张嘴,四只眼睛八条腿。
三只青蛙三张嘴,六只眼睛十二条腿。
四只青蛙四张嘴,八只眼睛十六条腿。
N只青蛙( )张嘴,( )只眼睛( )条腿。
第一单元《方程》单元练习讲评 篇10
教学内容:教科书第13~14页,“练习与应用”第5~7题,“探索与实践”第8~9题及“与反思”。
教学目标:
1、通过练习与应用,使学生进一步掌握列方程解决实际问题的方法与步骤,提高列方程解决实际问题的意识和能力。
2、通过小组合作,进一步培养学生探索的意识,发展思维能力。
3、通过与反思,使学生养成良好的学习习惯,获得成功体验,增强学好数学的信心。
教学过程:
一、练习与应用
1、谈话引入这节课我们继续对列方程解决实际问题进行练习。板书课题。
2、指导练习。独立完成5~7题。展示交流。集体评讲。你是根据什么等量关系列出方程的?在解方程时要注意什么?(步骤、格式、检验)
二、探索与实践
1、完成第8题。理解题意,完成填写。小组中交流第一个问题。汇报自己发现。把得到的和分别除以3,看看可以发现什么?可以得出什么结论?独立解答第二个问题。你是怎么解答第二个问题的?指导解答第三个问题。试着连续写出5个奇数,看看有什么发现?怎样求n的值呢?5个连续偶数的和有这样的规律吗?试试看。
2、完成第9题。小组中讨论方法,巡视指导。可以先把左边的两边都去掉两个苹果。1个梨=3个苹果再根据右边图:3个苹果=6个猕猴桃=1个梨
三、与反思
在小组中说说自己对每次指标的理解。自我反思与。说说自己的优点与不足。
四、阅读“你知道吗”可以再查找资料,详细了解。
五、课堂这节课我们复习了哪些内容?你有了哪些收获?
第一单元《方程》单元练习讲评 篇11
本单元教学方程的知识,是在四年级(下册)“用字母表示数”的基础上编排的。第一次教学方程,涉和的基础知识比较多,教学内容分成三局部编排。
第1~2页教学等式的含义与方程的意义,根据直观情境里的等量关系列方程。
第3~11页教学等式的性质,解方程,列方程解答一步计算的实际问题。
第12~14页全单元内容的整理与练习。
本单元编排的一篇“你知道吗”简要介绍了我国古代就有方程的思想,并有运用方程解决实际问题的历史记载。
1?从等式到方程,逐步构建新的数学知识。
方程是等式里的一类特殊对象,教材用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义。
(1)
借助天平体会等式的含义。
等式是方程的生长点,同学在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,本单元教材首先让同学体会等式的含义。
天平两臂平衡,表示两边的物体质量相等;两臂不平衡,表示两边物体的质量不相等。让同学在天平平衡的直观情境中体会等式,符合同学的认知特点。例1在天平图下方出现“=”,让同学用等式表达天平两边物体质量的相等关系,从中体会等式的含义。教材使用了“质量”这个词,是因为天平与其他的秤不同。习惯上秤计量物体有多重,天平计量物体的质量是多少。教学时不要把质量说成重量,但不必作过多的解释。
例2继续教学等式,教材的布置有三个特点:
第一,有些天平的两臂平衡,有些天平两臂不平衡。根据各个天平的状态,有时写出的是等式,有时写出的不是等式。同学在相等与不等的比较与感受中,能进一步体会等式的含义。第二,写出的四个式子里都含有未知数,有两个是含有未知数的等式。这便于同学初步感知方程,为教学方程的意义积累了具体的素材。第三,写四个式子时,对同学的要求由扶到放。圆圈里的关系符号都要同学填写,同学在选择“=”“>”或“<”时,能深刻体会符号两边相等与不相等的关系;符号两边的式子与数则逐渐放手让同学填写,这是因为他们以前没有写过含有未知数的等式与不等式。
(2)
教学方程的意义,突出概念的内涵与外延。
“含有未知数”与“等式”是方程意义的两点最重要的内涵。“含有未知数”也是方程区别于其他等式的关键特征。在第1页的两道例题里,同学陆续写出了等式,也写出了不等式;写出了不含未知数的等式,也写出了含有未知数的等式。这些都为教学方程的意义提供了鲜明的感知资料。教材首先告诉同学:
像x+50=150、2x=200这样含有未知数的等式叫做方程,让他们理解x+50=150、2x=200的一起特点是“含有未知数”,也是“等式”。这时,假如让同学对两道例题里写出的50+50=100、x+50>100和x+50<200不能称为方程的原因作出合理的解释,那么同学对方程是等式的理解会更深刻。教材接着布置讨论“等式和方程有什么关系”,并通过“练一练”第1题让同学先找出等式,再找出方程,理解等式与方程这两个概念之间的包括与被包括关系。即方程都是等式,但等式不都是方程。这道题里有以x为未知数的等式,也有以y为未知数的等式,使同学对“未知数”有正确的理解,防止把未知数局限为x,把方程狭隘地理解为“含有x的等式”。“练一练”第2题要求同学自身写出一些方程并相互交流,让它们在写方程时关注方程的实质属性,从而巩固方程的概念。
(3)
用方程表示直观情境里的相等关系。
第2页的“试一试”和“练一练”第3题都是看图列方程,编排这些题的目的是培养同学发现和理解实际情境里的等量关系的能力,体会方程是表示等量关系的数学方法,从而进一步巩固方程的概念,并为以后列方程解决实际问题打下扎实的基础。这些内容在编排上有两个特点:
一是直观情境的出现从天平图开始,发展到带括线的图画。带括线的图画在一年级(上册)就出现了,同学比较熟悉。但是,从列算式求答案的习惯思维转向列方程表示等量关系,仍然会有困难。因此,教材先让同学看天平图列方程。天平两臂平衡,表示它左右两边物体的质量相等,已经在两道例题里教学得很充沛了,看天平图列方程能让同学初步知道什么是列方程和怎样列方程,对依据什么列方程和列出的方程表示什么有所体验。
在此基础上,过渡到列方程表示带括线的图画里的等量关系,会平稳得多。二是带括线的图画里的等量关系,突出两个或几个局部数相加是它们的总数。在几个局部数相同时,它们相加用乘法比较简便。这些关系是数量之间最基本的关系。而且这些关系建立在加法和乘法的意义上,同学容易理解。如文具盒的价钱加笔记本的价钱一共20元,买4本同样的故事书一共要16.8元,列出的方程分别是12+x=20和4x=16.8。假如少数同学列出的方程是20-x=12或16.8÷x=4也是可以的,但不宜提倡;绝不能列出20-12=x、16.8÷4=x这样的方程。因为后者仍然是过去列算式的思路,不利于同学体会数量间的相等关系,对以后的教学也是有弊无利的。
2?利用等式的性质解方程。
在过去的小学数学教材里,同学是应用四则计算的各局部关系解方程。这样的思路只适宜解比较简单的方程,而且和中学教材不一致。《规范》从同学的久远发展和中小学教学的衔接动身,要求小学阶段的同学也要利用等式的性质解方程。因此,本单元布置了关于等式性质的内容,分两段教学:
第一段是等式的两边同时加上或减去同一个数,结果仍然是等式;第二段是等式的两边同时乘或除以同一个不等于零的数,结果仍然是等式。在每一段教学等式的性质以后,都和时让同学运用等式的性质解方程。
(1)
在直观情境中,按“形象感受→笼统概括”的方式教学等式的性质。
教材仍然用天平的直观情境教学等式的性质。因为在两臂平衡的天平上,左右两边物体的质量发生相同的变化,天平的两臂仍然坚持平衡。这种现象能形象地表示等式的性质,有利于同学的直观感受。
例3教学等式的一个性质。教材设计了四组天平图,每组左边的天平图表示变化前的等式,右边的天平图表示变化后的等式,从左边的等式到右边的等式,反映了等式的性质。上面的两组图揭示的是等式的两边都加上一个相同的数,仍然是等式;下面的两组图揭示的是等式的两边都减去相同的数,仍然是等式。四组图的内容综合起来就是等式的一个性质。教材精心设计每组天平上物体的质量,第一组图写出的是不含未知数的等式,在左边的天平表示20=20以后,右边天平的两边各加1个10克的砝码,看图填写20+○20+。同学在两个括号里都写“10”,在圆圈里写“=”,联系天平两边各加10克都变成30克,而天平仍然平衡的现象,体会填写的等式是合理的。这样就首次感知了等式的两边都加上同一个数,结果仍是等式。第二组图写出的是含有未知数的等式,从x=50到x+20=50+20的变化和比较中,对等式两边都加上相同的数有进一步的感受。第三组图写出的等式两边都用字母a表示砝码的质量,圈出a克砝码并画上箭头,表示去掉它的意思。联系已有经验,这里的a代表许多个数,这组天平图与等式概括了众多等式两边减去相同数的情况。第四组图在方程x+20=70的两边都减去20,不但又一次表示了等式性质,而且与解方程的方法十分接近。
另外,这道例题的8个等式中,有7个让同学在圆圈里填写“=”组成等式,这是引导同学切实关注等式有没有变化。右边的四个等式分别让同学在括号里填出同时加上或减去的数,有利于发现等式的性质。
例5教学等式的另一个性质。教材注意利用同学前面学习等式性质的经验,在感知天平的直观情境表示出等式性质的一个实例后,再让同学写一个等式,通过比较、概括与交流,得出“等式的两边都乘或除以相同的数,结果仍然是等式”的结论。教学时有两点应注意:
一是让同学正确理解图意。上面一组天平图的左边原来是一个质量为x克的物体,又添上一个质量相同的物体;右边原来是一个20克的砝码,又添上一个同样的砝码。这表示天平左右两边物体的质量都乘2。下面一组天平图左边原来是3个质量都为x克的物体,现在只剩下1个这样的物体;右边原来是3个20克的砝码,现在只剩下1个20克的砝码。这表示天平左右两边物体的质量都除以3。二是等式两边同时除以的那个数不能是0,这一点同学能够接受。因为前面的教学中,已经多次提到除数不能是0。
(2)
应用等式的性质解方程。
例4和例6教学解方程,解方程的关键是方程的两边都加(减)几、乘(除以)几,教材对此有精心的设计。例4看图列出方程,同学先从图中能得到求x值的启示:
只要在天平的左右两边各去掉10克的砝码。联系等式的性质与方程x+10=50的特点,理解“方程两边都减去10”的道理:
等式的两边都减去10,左边就剩下x,x的值只要通过右边的计算就能得到。例6在列出方程以后,让同学联系已有的解方程经验和有关的等式性质,考虑“方程两边都要除以几”这个问题,并解这个方程。这些设计都体现了从同学实际动身,让同学主动学习的教育理念。另外,例4的编写还注意了三点:
一是示范了解方程的书写格式,强调等式变换时,各个等式的等号要上下对齐,教学时必需严格遵循;二是求得x=40后,通过“是不是正确答案”的质疑,引导同学根据“左右两边是不是相等”进行检验;三是在回顾反思求x值的过程基础上,讲了什么是“解方程”。这些都是以后解方程时反复使用的知识。
协助同学逐渐掌握解方程的方法并形成相应的技能,是教材编写时认真考虑的问题。用好教材设计的两道题,能培养同学这方面的能力。一处是第4页“练一练”第1题,为了使方程的左边只剩下x,方程的左边已经加上25(或减去18),右边应该怎样?这是刚开始教学解方程时的设计。通过在方框里填数,在圆圈里填运算符号,
引导同学正确应用等式的性质,体会解方程的战略和思路,理出解方程的关键步骤。同学在方框里填数一般不会有问题,在圆圈里填运算符号可能会出现错误。要通过交流和评价,协助他们正确掌握方程的两边同时加上或同时减去相同的数。另一处是第6页第7题,简化解方程过程的书写,浓缩思路,是在基本掌握解方程的方法以后布置的。如解方程x-20=30,在方程的两边都加20这一步,省写了虚线框里的.内容: x-20+20=30+20,直接写出x=30+20。这样做能使解方程的考虑流畅、书写简便,从而提升解方程的能力。教学时要让同学体会简化的过程,重点讨论圆圈里填什么符号、方框里填什么数以和为什么。第8页“练一练”第1题、第10页第2题的编排意图与上面相同。
第一单元《方程》单元练习讲评 篇12
教学目标:
知识目标:
通过练习,使学生进一步理解数量关系,掌握用方程解应用题的方法,能正确运用方程解答应用题。
能力目标:
培养学生分析问题、解答问题的能力。
态度、情感、价值观:
培养学生认真细致的学习习惯。
教学重点:
理解数量关系,掌握用方程解应用题的方法,能正确运用方程解答应用题。
教学难点:
理解数量关系。
教学过程:
一、基本练习(5 分钟)
1.列方程
(1)某数的5 倍加上它的2 倍和是42,求这个数。
(2)X 的5 倍减去它的2 倍差是1.2,求X。
2.育民小学四五年级共植树600 棵,五年级植树是四年级的3 倍。两个年级各植树多少棵?
(1)画图,找等量关系。
(2)列方程解应用题。
二、层次练习(15 分钟)
1.育民小学四五年级同学植树,五年级植树是四年级的3 倍,五年级比四年级多植300 棵。四五年级各植多少棵?
(1)这道题与上题有哪些相同点和不同点?
(2)你会解答这道题吗?试做
(3)订正:
解:设四年级植X 棵,五年级植3X 棵。
3X-X=300
2X=300
X=150
3X=3150=450
答:四年级植150 棵,五年级植450 棵。
2.试一试:妈妈的年龄是女儿的4 倍,妈妈比女儿大27 岁,妈妈和女儿各多少岁?
学生独立做
3.小结:解答时,要抓住有倍的那句话设出未知数。看一看是求它们的和还是差,列出方程。
三、巩固练习(15 分钟)
1.看图列方程125 页3 题。
完成后交流
2.对比练习
(1)张叔叔骑自行车,李叔叔骑摩托车。二人从相距112 千米的两地同时出发,相向而行,经过1.6 小时相遇。李叔叔骑摩托车每小时行54 千米,张叔叔骑自行车每小时行多少千米?
(2)张叔叔骑自行车,李叔叔骑摩托车。二人从相距112 千米的两地同时出发,相向而行,李叔叔骑摩托车每小时行54 千米,张叔叔骑自行车每小时行16 千米,二人经过几小时相遇?
(3)张叔叔骑自行车,李叔叔骑摩托车。二人同时从两地出发,相向而行,李叔叔骑摩托车每小时行54 千米,张叔叔骑自行车每小时行16 千米,经过1.6 小时相遇。两地相距多少千米?
独立完成后交流。
四、总结交流(5 分钟)
说说你有什么收获?
第一单元《方程》单元练习讲评 篇13
一、教学目标:
1、结合具体情境,类比等式变形的过程抽象出等式的性质,了解等式性质是解方程的依据。
2、会用等式性质解形如x+5=12的简单方程。
3、培养观察、分析概括的能力。
二、课时安排:
1课时
三、教学重点:
能用等式的性质解简单的方程。
四、教学难点:
了解等式的性质。
五、教学过程
(一)导入新课
故事引入:在古代三国的时候,有人送给曹操一头大象,曹操要知道大象的重量,大臣们都不知道怎么办。这时小儿子曹冲却称出了船上石头的重量。你是怎样理解曹冲的方法的?
(板书:大象的体重=石头的重量)
师:曹冲之所以聪明,就在于他“运用了数量之间的等量关系来解决问题”的策略。今天我们也要用他这个策略解决以下问题。
检查预习。
(二)讲授新课
探究一:学习等式性质
1、师操作:在天平两侧各放一个5克砝码。
提问:你能用一个等式表示天两边关系吗?
提问:如果在天平一边加上一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,
教师总结概括出等式性质。
等式两边都加上同一个数,等式仍然成立。
师操作在刚才的基础上一个一个减砝码。
提问:你能用等式来表示吗?
提问:如果在天平一边去掉一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,
教师总结概括出等式性质。
等式两边都减去同一个数,等式仍然成立。
3、教师小结:我们刚才用天平演示的等式两边同时加上或者减去同一个数,等式仍然成立,这是等式的性质。这也是我们今天解方程的依据。
(三)重点精讲。
探究二:学习解方程
师板书x+2=10问:用天平如何表示?
问:如何用刚才的知识解方程?(两边都减去2)
1、师根据学生回答板书并画出天平图。
2、师在解题示范时要注重“解”和“等于号”的书写要求。
3、交代检验方法。
4、学生试着解方程。
y-7=12 23+x=45
组内交流收获和疑惑。
小组汇报。
教师总结板书:根据等式的性质解方程。
(五)随堂检测
1、请你画图或举例说说下面这句话的意思:等式两边都加上(或减去)同一个数,等式仍然成立。
2、看图列方程,并解方程。
3、解方程。
(1)x 19 = 2
(2)x - 12.3 = 3.8
4、看图列方程,并解方程。
5、看图列方程,并解方程。
6、看图列方程,并解方程。
板书设计
X+5=7 x-5= 7
解:X+5-5=7-5解:x-5+5=7+5
X=2 x=12
等式的两边同时加上或者减去同一个数,等式仍然成立。
第一单元《方程》单元练习讲评 篇14
第一次集体备课(初案)
学科
数学
班级
五年级
备课教师
张云
备课组
五年级数学组
课题
第一单元:《方程》第三课时 练习课
课时
第( 3)课时
一、教学目标:
1、通过练习,使学生进一步体会方程的含义。
2、进一步理解等式的性质,能根据等式的性质正确地解方程。
二、教学重难点:能根据等式的性质,正确的解方程及检验。
三、教法、学法(简要式):
本节课教学采用自主探索、合作交流的方法进行组织教学。
四、教学过程(提纲式):
一、基础练习
二、完成第6页的7-12题
三、课堂作业
四、课堂小结
这节课学习的内容是什么?
第二次集体备课(研讨记录)
时间
(2010 )至(2011 )学年度第(2)学期第(1)周
地点
多媒体教室
学科
数学
主持人
陈源文
记录人
张云
备课组
五年级数学组
课题
第一单元:《方程》第三课时 练习课
课时
第( 3 )课时
一、主持人(级组长)发言:
各位老师:大家好,今天我们年级组集中学习,主要内容是讨论一下我们第一次集体备课
(初案)的情况,针对存在的问题,请大家提出宝贵的意见,以帮助我们归纳总结出第
三次的详细教案
二、备课组各位教师说(初案)教学思路:
谢小森老师:在教学过程中,放手让学生自主探索算
法,教师在归纳总结。
林朝飞老师:组织学生去发现计算的方法,让学生体验
学习成功带来的快乐。
陈源文老师:通过学生自主探索,自主交流,归纳总结来组织教学。
吴坤理老师:使学生能在探索算法的过程中,培养比较和分析的能力,发展数学思考。
三、备课组研讨过程(发言要点):
陈源文老师:在教学练习时应从生活中创设情境来激发学生的兴趣。
谢小森老师:可以让学生先根据解决的问题列出算式,然后让学生自主
探索,获得新知,明白算法。
林朝飞老师:在巩固练习时,可以指明让学生说说计算过程。
吴坤理老师:在教学中应注意学生的计算方法和过程。
张云老师:让学生在所设情境中进行学习。同时还注意培养学生提问和解决问题的能力。
四、课题的总体教学思路:
本课教学的关键就是引导学生先独立完成,再让学生说说这里的过程与此前解方程的过程比较,省略了什么,明确以后解方程时,先要在脑子里想好方程两边应同时加上或减去一个什么数,但书写时可以适当省略。再让学生完成后面的练习,逐步掌握简化书写过程,并解出方程。还可以让学生说说解含有小数的方程的体会。通过小组交流的形式,让每个学生都了解自己是否已经掌握了这些方程的解法。
第三次集体备课(特色教案)
学 科
数学
备课组及教师姓名
四年级数学陈源文、谢小森、张云、林朝飞、吴坤理
备课时间
( 2011)年( 2 )月( 20 )日第( 1 )周星期( )
课 题
第一单元:《方程》第三课时 练习课
课 时
共( 1)课时
一、本课在全册或单元中的地位及作用:
本节课是在学生已经学习了方程,学习这部分内容,有利于学生完整地掌握整数方程的计算方法,并以今后进一步学习方程积累经验。以各种形式的练习进行方程学习,再通过进一步的交流,帮助学生掌握方程的基本方法。
二、三维教学目标:
1、知识目标:使学生经历探索方程学习的过程,掌握方程练习方法,能正确进行计算。
2、能力目标:使学生在练习的过程中体会新旧知识的联系,能主动总结、归纳方程的笔算方法,培养类比及分析,概括能力,发展应用意识。
3、情感目标:使学生在主动参与活动的过程中,进一步体验学习成功带来的快乐,激发探索方程的兴趣。
三、教学重难点:
教学重点:能根据等式的性质,正确的解方程及检验。
四、教法、学法:
1、 情境教学促感悟
2、 让学生运用已有的知识经验,根据自己的体验,感悟生活中蕴含着大量的数学信息,激发学生的学习兴趣。
3、自主探索体现主体性在汇报交流中,尊重学生的思维方式,充分发挥学生的主体性地位培养学生的自主探索精神,不断积累积极的数学学习情感和体验。
五、教学过程(分课时):
一、导入新课
上一节课,我们学习了什么?
复习天平保持平衡的规律及等式保持不变的规律。学习这些规律有什么用呢?从这节课开始我们就会逐渐发现到它的重要作用了。
二、新知学习。
1、解决问题。
出示p57的题目,从图上可以获取哪些数学信息?天平保持平衡说明什么?杯子与水的质量加起来共重250克。
能用一个方程来表示这一等量关系吗?得到:100+x=250,x是多少方程左右两边才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。
全班交流。可能有以下四种思路:
(1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。
(2)利用加减法的关系:250-100=150。
(3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。
(4)直接利用等式不变的规律从两边减去100。
对于这些不同的方法,分别予以肯定。从而得到x的值等于150,将150代入方程,左右两边相等。
2、认识、区别方程的解和解方程。
得出方程的解与解方程的含:
像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。
而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。
这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?
方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。
3、练习。(做一做)
齐读题目要求。
怎么判断x=3是不是方程的解?将x=5代入方程之中看左右两边是否相等,写作格式是:方程左边=5x
=53
=15
=方程右边
所以,x=3是方程的解。
用同样的方法检查x=2是不是方程5x=15的解。
二、作业。
独立完成练习十一第4题,强调书写格式。
三、小结。
通过这节课学到了什么?还有什么问题?
七、学情分析与评价反思:
在方程练习中,主要有两个需要注意的问题: 一是认识、区别方程的解和解方程。从而让学生真正掌握正确的练习方法。在比较中得出:像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。,又进一步完善了学生的认知结构,有利于学生合理、灵活地进行计算。
第一单元《方程》单元练习讲评 篇15
教学内容:
第8页第5-10题
教学目标:
1、进一步理解并掌握如ax±b=c、ax±bx=c的方程的解法,会列上述方程解决两步计算的实际问题。
2、在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,积累将现实问题数学化的经验,感受、方程的思想方法及价值,发展抽象能力和符号感。
3、在积极参与数学活动的过程中,养成独立思考,主动与他人合作交流,自觉检验等习惯;获得一些成功的体验,进一步树立学好数学的自信心,产生对数学的兴趣。
教学重点、难点:
经历将现实问题抽象为方程的过程,积累将现实问题数学化的经验,感受、方程的思想方法及价值,发展抽象能力和符号感。
教学对策:
提供基本题和拓展题,让不同程度的学生在原有基础上得到不同的发展。
教学准备:
投影片或小黑板
教学过程:
一、基本练习
1、解方程。
8.2X-7.4=9 2X+52X=162
32+6X=50 10.5X-7.5X=0.9
学生独立解答,投影四位学生的解题过程,教师及时讲评,学生集体订正。
2、看图列方程并求出X。(第8页第5题)
(图略)学生独立思考后列方程解答,然后交流,同桌之间互相检查解题情况,互相评价。
3、列方程解决实际问题。(第8页第6-10题)
(1)第6题。
学生独立思考数量关系列出方程,组织学生交流自己的思考过程,教师及时评价。
(2)第7、8、10题。
学生独立思考并列出方程,指名学生说说数量关系和列出的方程,教师及时评价。
将第7、8、10题与第6题进行比较,请学生说说两题的分析和解题过程有什么不同。
(3)第9题。
提问:根据题中提供的信息,你想到了哪些数量关系?你觉得用什么方法解决这个问题较简便?
鼓励学生用不同的方法来解决这一问题,然后请学生交流自己的想法,让学生感受方程的思想方法及价值。
二、拓展练习
1、小明的储蓄罐里一共有87.5元,都是1元和5角的硬币。如果1元硬币的枚数是5角硬币的3倍。1元和5角的硬币各有多少枚?
学生认真读题后思考题中的数量关系,请学生交流。
在理解数量关系后组织学生正确列出方程并解答。
教师巡视学生练习情况,结合学生实际及时讲评。
2、甲、乙两车队共有汽车180辆,因运输任务需要从甲队调30辆支援乙队,使乙队的汽车正好是甲队的2倍。问甲、乙两队原有汽车各多少辆?
启发学生:两个车队的汽车总数没有发生变化,因此数量关系式为:甲车队汽车辆数+乙车队汽车辆数=180辆,然后再思考怎样用含有字母的式子来表示这两个未知的数量。
学生独立解答后组织交流,教师及时评价学生交流情况。
3、书上第8页的“思考题”。
在学生认真读题的基础上,教师引导学生理解“取了若干次后,红球正好取完,白球还有10个”,说明取出的红球比白球多10个。根据这样的数量关系来列出方程,解决本题。
三、全课总结
同桌之间互相检查本课练习情况,互相评价学习情况,再请几位学生全班交流。
四、布置作业
第8页第5、6、8、9题。
课后反思:
今天的练习课中,我主要借助教材上提供的一些实际问题和补充了一些练习题,想通过这些练习,帮助学生进一步提高分析数量关系的能力,能正确、熟练地运用列方程的方法来解决一些实际问题。我还参考了同一年级两位老师的“课前思考”,在课中根据学生实际情况对教学活动稍做调整,适当降低了练习难度,尽可能考虑到全体学生的发展。
练习课上,我也选用了高教导设计的一组有关行程问题的对比题,课中注意了对数量关系的分析,给学生较多的时间来思考、分析和交流。课堂上学习效果还不错,所以,我将教材上第8页的第5、6、7、8题作为课内作业,让学生独立完成。批完两个班学生的作业后,我发现自己对学生学习情况还没有摸透,特别是这学期刚接手的六二班。六二班中有接近1/3的学生在列方程解第5题时出现错误,分析错误原因主要是对于三角形面积计算公式和长方形周长计算公式已遗忘,列出错误的方程,因而造成错误,另一原因是在解这两个稍复杂的方程时,有些学生解方程有困难,胡乱计算。这两题虽然是有关几何图形面积和周长的计算,但由于数量关系式的不同,也可以列出不同的方程。而且有些方程可能较简单,更便于解答。看来,这一题还得重视起来,明天的练习课上,我要再组织学生来解答,更好地掌握用列方程的方法来解决有关几何图形的问题。