欢迎您访问教学资源网(www.jxzy.wang)
首页 > 学习方法 > 数学学习方法 > 高二数学学习方法八

高二数学学习方法八

网友 分享 时间: 加入收藏 我要投稿 点赞

  一、不等式的基本性质:

  注意:(1)特值法是判断不等式命题是否成立的一种方法,此法尤其适用于不成立的命题。

  (2)注意课本上的几个性质,另外需要特别注意:

  ①若ab0,则 。即不等式两边同号时,不等式两边取倒数,不等号方向要改变。

  ②如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论。

  ③图象法:利用有关函数的图象(指数函数、对数函数、二次函数、三角函数的图象),直接比较大小。

  ④中介值法:先把要比较的代数式与0比,与1比,然后再比较它们的大小

  二、均值不等式:两个数的算术平均数不小于它们的几何平均数。

  基本应用:①放缩,变形;

  ②求函数最值:注意:①一正二定三相等;②积定和最小,和定积最大。

  常用的方法为:拆、凑、平方;

  三、绝对值不等式:

  注意:上述等号=成立的条件;

  四、常用的基本不等式:

  (1)比较法:作差比较:

  作差比较的步骤:

  ⑴作差:对要比较大小的两个数(或式)作差。

  ⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和。

  ⑶判断差的符号:结合变形的结果及题设条件判断差的符号。

  注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。

  (2)综合法:由因导果。

  (3)分析法:执果索因。基本步骤:要证只需证,只需证

  (4)反证法:正难则反。

  (5)放缩法:将不等式一侧适当的放大或缩小以达证题目的。

  放缩法的方法有:

  ⑴添加或舍去一些项,

  ⑵将分子或分母放大(或缩小)

  ⑶利用基本不等式,

  (6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。

  (7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;

  

221381