八年级数学上册课件简短6篇
八年级的数学课件怎么写的。一个完整的说课主要包括以下几个方面内容,说教学目标、说教学内容、 还要注意指出教学内容的重点、难点和关键点。下面小编给大家带来关于八年级数学上册课件简短,希望会对大家的工作与学习有所帮助。
八年级数学上册课件简短(精选篇1)
平方根(一)
一、1.D2.C
二、1.62.3.1
三、1.(1)16(2)(3)0.4
2.(1)0,(2)3,(3)(4)40(5)0.5(6)4
3.=0.54.倍;倍.
平方根(二)
一、1.C2.D
二、1.22.3.7和8
三、1.(1)(2)(3)
2.(1)43(2)11.3(3)12.25(4)(5)6.62
3.(1)0.54771.7325.47717.32
(2)被开方数的小数点向右(左)移动两位,所得结果小数点向右(左)
移动一位。(3)0.173254.77
平方根(三)
一、1.D2.C
二、1.,22,3.
三、1.(1)(2)(3)(4)
2.(1)(2)-13(3)11(4)7(5)1.2(6)-
3.(1)(2)(3)(4)
八年级数学上册课件简短(精选篇2)
一次函数
(1)正比例函数:一般地,形如y=kx(k是常数,k>0)的函数,叫做正比例函数,其中k叫做比例系数;
(2)正比例函数图像特征:一些过原点的直线;
(3)图像性质:
①当k>0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k<0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小;
(4)求正比例函数的解析式:已知一个非原点即可;
(5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)
(6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数;
(7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)
(8)一次函数图像特征:一些直线;
(9)性质:
①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx平移|b|个单位长度而得;(当b>0,向上平移;当b<0,向下平移)
②当k>0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;
③当k<0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;
④当b>0时,直线y=kx+b与y轴正半轴有交点为(0,b);
⑤当b<0时,直线y=kx+b与y轴负半轴有交点为(0,b);
(10)求一次函数的解析式:即要求k与b的值;
(11)画一次函数的图像:已知两点;
用函数观点看方程(组)与不等式
(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;
(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;
(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;
(4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标;
八年级数学上册课件简短(精选篇3)
等边三角形的性质:
等边三角形的三个角都相等,并且每一个角都等于600。
等边三角形的判定:
①三个角都相等的三角形是等边三角形。
②有一个角是600的等腰三角形是等边三角形。
在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。
等腰三角形的性质
(1)等腰三角形的性质定理及推论:
定理:等腰三角形的两个底角相等(简称:等边对等角)
推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
(2)等腰三角形的其他性质:
①等腰直角三角形的两个底角相等且等于45°
②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a,底边长为b,则
④等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=
等腰三角形的判定
等腰三角形的判定定理及推论:
定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。
推论1:三个角都相等的三角形是等边三角形
推论2:有一个角是60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
八年级数学上册课件简短(精选篇4)
一、轴对称图形
1、把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。
2、把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点
3、轴对称图形和轴对称的区别与联系
4、轴对称的性质
①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二、线段的垂直平分线
1、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
2、线段垂直平分线上的点与这条线段的两个端点的距离相等
3、与一条线段两个端点距离相等的点,在线段的垂直平分线上
三、用坐标表示轴对称小结:
1、在平面直角坐标系中,关于x轴对称的'点横坐标相等,纵坐标互为相反数。关于y轴对称的点横坐标互为相反数,纵坐标相等。
2、三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等
四、(等腰三角形)知识点回顾
1、等腰三角形的性质
①等腰三角形的两个底角相等。(等边对等角)
②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)
2、等腰三角形的判定:
如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)
八年级数学上册课件简短(精选篇5)
考点一:三角形
三角形中的考点分为三类:一类是一般的三角形,一类是等腰三角形,一类是等边三角形。
一般的三角形常考的是三角形的面积,周长相关的计算,以及三角形全等相关的证明。三角形的面积为1/2乘以底乘以高,三角形的周长为三个边长之和。证明三角形全等的方法:SSS(三个边对应相等的两个三角形全等),SAS(两边及其夹角对应相等的两个三角形全等),AAS(两个角以及其中一个角对应的边相等的两个三角形全等),ASA(两角及其夹边对应的两个三角形对应相等的两个三角形全等)。
等腰三角形:两个边长或者两个角相等的三角形为等腰三角形。等腰三角形底边上的高和中线还有角平分线三线是重合的,考试的时候,经常构造这个辅助线进行相关的证明。
等边三角形:三个边都相等的三角形为等边三角形,等边三角形的各个角都是60度,各个边长都相等。
考点二:多边形
多边形的内角和:180(n-2),n为多边形的变数。经常给出度数范围,求边长,常用的方法是假设多边形的边数为n,列不等式,最后求出关于边数n的范围,取整数即可。如一个多边形的'内角和大于850度小于1000度,求多边形的边数。
列不等式:850<180(n-2)<1000,解的:85/18+2<n
多边形的对角线的个数:n(n-3)/2
考点三:轴对称
轴对称图像经常会结合全等进行相关的考核,主要是数形结合的题目,后续在模拟试题中会提到,你只要知道关于某条线能够完全重合的图形为轴对称图形即可,如等腰三角形,正方形等。
考点四:整式
整式必考的考点为代数式相关的求值,平时学生们都加以训练了,只要考试认真按照四则运算进行相关的求解即可,先化简,再代入值求解即可。
考点五:因式分解
因式分解是必考的内容之一,因式分解答题步骤我们来为大家总结一下:首先看式子中是否有公因数,有公因数的一定要提取公因数,然后,看是否能够利用平方差公式或者完全平方公式,不能的话,考虑使用十字相乘的方法进行分解。具体的分解技巧见前面课程中提到的因式分解解题技巧。
考点六:分式
分式考点比较单一,首先是分式的计算,和整式是一样的方法,其次是分式方程解应用题,求解完应用题一定要代入原来的分式方程中进行验证,判断分母是否为0,即解方程结束,要加上一句话:经验证x等于某某数值为原分式方程的解。相关的解题注意事项,后续在期末试题中我们会给出详解的哦。
八年级数学上册课件简短(精选篇6)
全等三角形
1、基本定义:
⑴全等形:能够完全重合的两个图形叫做全等形。
⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点。
⑷对应边:全等三角形中互相重合的边叫做对应边。
⑸对应角:全等三角形中互相重合的角叫做对应角。
2、基本性质:
⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性。
⑵全等三角形的性质:全等三角形的对应边相等,对应角相等。
3、全等三角形的判定定理:
⑴边边边(SSS):三边对应相等的两个三角形全等。
⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等。
⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等。
⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等。
⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线:
⑴画法:
⑵性质定理:角平分线上的点到角的两边的距离相等。
⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上。
5、证明的基本方法:
⑴明确命题中的已知和求证。(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)
⑵根据题意,画出图形,并用数字符号表示已知和求证。
⑶经过分析,找出由已知推出求证的途径,写出证明过程。